On a quadratic programming problem involving distances in trees

Let T be a tree and let D be the distance matrix of the tree. The problem of finding the maximum of x ′ D x subject to x being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research Jg. 243; H. 1-2; S. 365 - 373
Hauptverfasser: Bapat, R. B., Neogy, S. K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2016
Springer
Springer Nature B.V
Schlagworte:
ISSN:0254-5330, 1572-9338
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T be a tree and let D be the distance matrix of the tree. The problem of finding the maximum of x ′ D x subject to x being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium points of symmetric bimatrix games and maximizing weighted average distance in graphs. We show that the problem can be converted into a strictly convex quadratic programming problem and hence it can be solved in polynomial time.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-014-1743-y