On a quadratic programming problem involving distances in trees
Let T be a tree and let D be the distance matrix of the tree. The problem of finding the maximum of x ′ D x subject to x being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium poin...
Gespeichert in:
| Veröffentlicht in: | Annals of operations research Jg. 243; H. 1-2; S. 365 - 373 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2016
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0254-5330, 1572-9338 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Let
T
be a tree and let
D
be the distance matrix of the tree. The problem of finding the maximum of
x
′
D
x
subject to
x
being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium points of symmetric bimatrix games and maximizing weighted average distance in graphs. We show that the problem can be converted into a strictly convex quadratic programming problem and hence it can be solved in polynomial time. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-014-1743-y |