On a quadratic programming problem involving distances in trees

Let T be a tree and let D be the distance matrix of the tree. The problem of finding the maximum of x ′ D x subject to x being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium poin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of operations research Ročník 243; číslo 1-2; s. 365 - 373
Hlavní autori: Bapat, R. B., Neogy, S. K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2016
Springer
Springer Nature B.V
Predmet:
ISSN:0254-5330, 1572-9338
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let T be a tree and let D be the distance matrix of the tree. The problem of finding the maximum of x ′ D x subject to x being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium points of symmetric bimatrix games and maximizing weighted average distance in graphs. We show that the problem can be converted into a strictly convex quadratic programming problem and hence it can be solved in polynomial time.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-014-1743-y