Model Selection for Exponential Power Mixture Regression Models

Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 26; číslo 5; s. 422
Hlavní autoři: Jiang, Yunlu, Liu, Jiangchuan, Zou, Hang, Huang, Xiaowen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.05.2024
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method.
AbstractList Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method.
Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method.Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method.
Audience Academic
Author Liu, Jiangchuan
Huang, Xiaowen
Zou, Hang
Jiang, Yunlu
Author_xml – sequence: 1
  givenname: Yunlu
  surname: Jiang
  fullname: Jiang, Yunlu
– sequence: 2
  givenname: Jiangchuan
  surname: Liu
  fullname: Liu, Jiangchuan
– sequence: 3
  givenname: Hang
  surname: Zou
  fullname: Zou, Hang
– sequence: 4
  givenname: Xiaowen
  surname: Huang
  fullname: Huang, Xiaowen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38785671$$D View this record in MEDLINE/PubMed
BookMark eNptkd9rFDEQx4NUbHv64D8gC77ow7WTX5vkSUqpWmhR_PG8ZJPJkWNvcya7tP735nr1kCLzkGH4zHcy8z0lR2MakZDXFM44N3COrAUJgrFn5ISCMUvBAY7-yY_JaSlrAMYZbV-QY66Vlq2iJ-TDbfI4NN9xQDfFNDYh5ebqflsHjFO0Q_M13WFubuP9NGdsvuEqYyk78KGxvCTPgx0Kvnp8F-Tnx6sfl5-XN18-XV9e3CydkHxa0t4rBb4HYTjngioKvZFSY--Radt6q4KQwVjuIKAz3ujeBG5asL2gYPmCXO91fbLrbpvjxubfXbKxeyikvOpsnqIbsEMRBBhOnVZUBO8NY1K3xmmKqtc0VK13e61tTr9mLFO3icXhMNgR01w6Di1w1RqhKvr2CbpOcx7rppWSRggpDKvU2Z5a2To_jiFN2boaHjfR1VOGWOsXykhutKgHWJA3j7Jzv0F_2OevLxV4vwdcTqVkDAeEQrfzvDt4XtnzJ6yLk92ZWX8Rh_90_AF226mg
CitedBy_id crossref_primary_10_29244_jcfcs_4_1_51_65
Cites_doi 10.1198/jasa.2009.0103
10.2307/2532881
10.1198/0003130042836
10.1162/neco.1991.3.1.79
10.1080/02664763.2021.1990225
10.1093/biomet/asm053
10.1198/016214501753382273
10.1080/03610918.2022.2077959
10.1016/0304-4076(73)90002-X
10.1002/0471721182
10.1111/insr.12349
10.1146/annurev-statistics-031017-100325
10.1080/10691898.1998.11910618
10.1198/016214507000000590
10.1201/9780203489437
10.1080/01621459.1972.10482378
10.1080/03610926.2019.1601222
10.1007/s00180-015-0596-4
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.3390/e26050422
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_e4f40931c8714fdd9225869c81e7b81f
A795398433
38785671
10_3390_e26050422
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c453t-1bd770db04933341710b9558ebde28a6da7f45f9a3c0fec9d98b9f3960ab410a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233015600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:28:09 EDT 2025
Fri Sep 05 13:08:08 EDT 2025
Fri Jul 25 12:00:57 EDT 2025
Tue Nov 04 18:14:34 EST 2025
Thu Apr 03 06:56:56 EDT 2025
Tue Nov 18 21:55:59 EST 2025
Sat Nov 29 07:15:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords exponential power distribution
finite mixture of linear regression models
variable selection
modified EM algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-1bd770db04933341710b9558ebde28a6da7f45f9a3c0fec9d98b9f3960ab410a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/e4f40931c8714fdd9225869c81e7b81f
PMID 38785671
PQID 3059445492
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_e4f40931c8714fdd9225869c81e7b81f
proquest_miscellaneous_3060376947
proquest_journals_3059445492
gale_infotracacademiconefile_A795398433
pubmed_primary_38785671
crossref_primary_10_3390_e26050422
crossref_citationtrail_10_3390_e26050422
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Quandt (ref_1) 1972; 67
Wang (ref_16) 2023; 50
Jiang (ref_13) 2016; 45
ref_18
Chen (ref_9) 2009; 104
ref_15
Zou (ref_23) 2008; 36
Dempster (ref_19) 1977; 39
Hunter (ref_20) 2004; 58
Wang (ref_11) 1996; 52
Wang (ref_24) 2007; 94
Jacobs (ref_3) 1991; 3
Yu (ref_17) 2020; 49
Khalili (ref_12) 2007; 102
Luo (ref_14) 2008; 46
Fan (ref_22) 2001; 96
Watnik (ref_25) 1998; 6
Yu (ref_8) 2020; 88
Goldfeld (ref_2) 1973; 1
Kobayashi (ref_21) 2016; 31
McLachlan (ref_7) 2019; 6
Peng (ref_10) 2017; 27
ref_5
ref_4
ref_6
References_xml – volume: 104
  start-page: 187
  year: 2009
  ident: ref_9
  article-title: Order selection in finite mixture models with a nonsmooth penalty
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0103
– volume: 52
  start-page: 381
  year: 1996
  ident: ref_11
  article-title: Mixed Poisson regression models with covariate dependent rates
  publication-title: Biometrics
  doi: 10.2307/2532881
– volume: 58
  start-page: 30
  year: 2004
  ident: ref_20
  article-title: A tutorial on MM algorithms
  publication-title: Am. Stat.
  doi: 10.1198/0003130042836
– volume: 36
  start-page: 1509
  year: 2008
  ident: ref_23
  article-title: One-step sparse estimates in nonconcave penalized likelihood models
  publication-title: Ann. Stat.
– volume: 3
  start-page: 79
  year: 1991
  ident: ref_3
  article-title: Adaptive mixtures of local experts
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.1.79
– volume: 50
  start-page: 291
  year: 2023
  ident: ref_16
  article-title: Component selection for exponential power mixture models
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2021.1990225
– volume: 27
  start-page: 147
  year: 2017
  ident: ref_10
  article-title: Model Selection for Gaussian Mixture Models
  publication-title: Stat. Sin.
– volume: 45
  start-page: 549
  year: 2016
  ident: ref_13
  article-title: Robust variable selection for mixture linear regression models
  publication-title: Hacet. J. Math. Stat.
– volume: 94
  start-page: 553
  year: 2007
  ident: ref_24
  article-title: Tuning parameter selectors for the smoothly clipped absolute deviation method
  publication-title: Biometrika
  doi: 10.1093/biomet/asm053
– ident: ref_18
– volume: 96
  start-page: 1348
  year: 2001
  ident: ref_22
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– ident: ref_15
  doi: 10.1080/03610918.2022.2077959
– ident: ref_4
– volume: 1
  start-page: 3
  year: 1973
  ident: ref_2
  article-title: A Markov model for switching regressions
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(73)90002-X
– ident: ref_6
  doi: 10.1002/0471721182
– volume: 88
  start-page: 176
  year: 2020
  ident: ref_8
  article-title: A selective overview and comparison of robust mixture regression estimators
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12349
– volume: 6
  start-page: 355
  year: 2019
  ident: ref_7
  article-title: Finite mixture models
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-031017-100325
– volume: 46
  start-page: 403
  year: 2008
  ident: ref_14
  article-title: On mixture regression shrinkage and selection via the MR-Lasso
  publication-title: Int. J. Pure Appl. Math.
– volume: 6
  start-page: 1
  year: 1998
  ident: ref_25
  article-title: Pay for play: Are baseball salaries based on performance?
  publication-title: J. Stat. Educ.
  doi: 10.1080/10691898.1998.11910618
– volume: 102
  start-page: 1025
  year: 2007
  ident: ref_12
  article-title: Variable selection in finite mixture of regression models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214507000000590
– ident: ref_5
  doi: 10.1201/9780203489437
– volume: 67
  start-page: 306
  year: 1972
  ident: ref_1
  article-title: A new approach to estimating switching regressions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10482378
– volume: 49
  start-page: 4347
  year: 2020
  ident: ref_17
  article-title: A new model selection procedure for finite mixture regression models
  publication-title: Commun. Stat.-Theory Methods
  doi: 10.1080/03610926.2019.1601222
– volume: 31
  start-page: 49
  year: 2016
  ident: ref_21
  article-title: Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-015-0596-4
– volume: 39
  start-page: 1
  year: 1977
  ident: ref_19
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
SSID ssj0023216
Score 2.3355186
Snippet Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 422
SubjectTerms Algorithms
Approximation
Consistency
exponential power distribution
Feature selection
finite mixture of linear regression models
Lagrange multiplier
Maximization
Mixtures
modified EM algorithm
Normality
Numerical analysis
Optimization
Parameter modification
Regression models
Simulation methods
Sparsity
Statistical analysis
variable selection
Variables
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFing0pUUBIcEl6nrt-HGq2qoVB6gqClJvVvyqKlXZZXdb9ecz43iDeIgLlxySSTSe8Yxn7Mk3AO-Y4j6i9BujuWyEF6xxybFGU6W70pzJlHFmP6nTU31xYc7KhtuylFWufWJ21GHmaY98jxOwiCA8sf3594a6RtHpammhcR8eEEoCy6V752PCxadMDmhCHFP7vUixO2Fe_bIGZaj-Px3yb2FmXm5Onvwvo5vwuASa9cEwM57Cvdg_g31qfXZdn-fmN6iRGkPW-vhuPuupaAjJz6hpWv356o4OFuov8XIok-3r_OLyOXw7Of569LEpLRQaL1q-apgLSk2CwzyAc1ywMJ5wpm11dCFOdSdDp5Jok-m4n6ToTTDamcQxremcYJOOv4CNHnnYgroN0nSydUkpJ7xUJuAlTgWPBAGoRAUf1kK1vuCLU5uLa4t5BsnfjvKv4O1IOh9ANf5GdEiaGQkIBzvfmC0ubTErG0XCBJUzj3mfSCEYdE9aGq9ZVE6zVMF70qsla0VmfFd-OsAhEe6VPVCm5UYLzivYWavTFjNe2p-6rODN-BgNkE5Vuj7ObohGTtBLG6EqeDlMmZFnrpVupWLb__74K3g0xVhpqKPcgY3V4ibuwkN_u7paLl7nOf0D9FP9Kg
  priority: 102
  providerName: ProQuest
Title Model Selection for Exponential Power Mixture Regression Models
URI https://www.ncbi.nlm.nih.gov/pubmed/38785671
https://www.proquest.com/docview/3059445492
https://www.proquest.com/docview/3060376947
https://doaj.org/article/e4f40931c8714fdd9225869c81e7b81f
Volume 26
WOSCitedRecordID wos001233015600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC40evAiiq_RuIwi6GXI9FZPP06SyAYFswyJwnpqpnu6JRAmIbuRnPztVs3MDr7Ai5c-TNdAdVU_vqKrvwJ4JTSGSNYvrEFVyCBF4ZMXheFMd21QqNTzzH7Uy6VZrWz9U6kvzgkb6IEHw-1FmSgEQREI2cvUtpYmoFE2GBG1NyLx7ltquw2mxlAL50INPEJIQf1eZNTObFe_nD49Sf-fW_FvALM_aA7vwd0RIeb7g2b34UbsHsBbrll2lp_0VWvIlDlhzXxxfXHecbYPiddc7Sw_Or3mG4H8OH4d8lu7vP9x_RA-Hy4-vXtfjLUPiiAr3BTCt1qXrScAj0gnDQEBb6vKRN_GuWlU2-gkq2QbDGWKwbbWeJuQ4pHGS1E2-Ah2OtLhCeRVq2yjKp-09jIobVtq4lxiZO4-LTN4s7WJCyMxONenOHMUILD53GS-DF5OohcDG8bfhA7YsJMAE1j3H8itbnSr-5dbM3jNbnG8zEiZ0IyvBWhITFjl9rWt0BqJmMHu1nNuXH9rh0xDI5l9LoMXUzetHL4Oabp4fsUyqqTt1UqdwePB45POaLSplBZP_8dYnsGdOUGhIU1yF3Y2l1fxOdwO3zan68sZ3NQrM4NbB4tlfTzrp_GMM1BPuP2-oJ76w1H95QeU0vTr
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXAuKVUiAgEFyixrHjxwFVBVq16nZV0SL1lsaOXVWqssvuFsqf4jcykxfiIW49cMkhmUSO58s84vE3AC-Z4s7j7CdGc5kIJ1hig2WJpkp3pTmToeGZHanxWB8fm4Ml-N7vhaGyyt4mNoa6mjj6R77OiVhEEJ_YxvRzQl2jaHW1b6HRwmLPf_uKKdv87e4H1O-rLNveOnq_k3RdBRIncr5ImK2USiuLoTHnaMPRxVqT59rbyme6lFWpgsiDKblLg3emMtqawDHSL61gacnxudfgOoYRmWlKBQ-HBI9nTLbsRZybdN1TrkAcW7_4vKY1wJ8O4LewtnFv27f_t4m5AytdIB1vtsi_C0u-vgcb1NrtPD5smvsg4mIMyeOty-mkpqIoFD-gpnDx_tklLZzEH_1pWwZcx82N8_vw6UrG_ACWaxzDI4jzSppS5jYoZYWTylR48JngnigOlYjgTa_EwnX86dTG47zAPIr0XQz6juDFIDptSUP-JvSOkDAIEM93c2IyOy06s1F4ETAB58xhXitCVRk0v1oap5lXVrMQwWvCUUHWCAfjym5TBb4S8XoVm8rk3GjBeQRrPXyKzkzNi5_YieD5cBkNDK0albWfXJCMTNELGaEieNhCdBgz10rnUrHVfz_8GdzcOdofFaPd8d5juJVhXNjWjK7B8mJ24Z_ADfdlcTafPW2-pxhOrhqnPwB5-Fps
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceIhXSoGAQHCJNo6d2D6gqtCuWLVdrXhI7SnEjl1VqrLb3S2Uv8avYyYvxEPceuCSQzKxHPvzPOLxNwDPmeTW4ehHWvEsElawyHjDIkWZ7lJxlvmaZ3ZfTibq8FBP1-B7dxaG0io7nVgr6nJm6R_5kBOxiCA-saFv0yKmO6Ot-VlEFaRop7Urp9FAZM99-4rh2_L1eAfn-kWSjHY_vn0XtRUGIitSvoqYKaWMS4NuMueoz9HcGp2mypnSJarIykJ6kXpdcBt7Z3WpldGeo9dfGMHigmO7V2AdXXKRDGB9Oj6YHvXhHk9Y1nAZca7joaPIgRi3frGAdaGAP83Bb05ubexGN__nYboFN1oXO9xu1sRtWHPVHdiiom-n4Ye67A9iMURnPdy9mM8qSpdC8SmViwsPTi5oSyV8746bBOEqrF9c3oVPl9LnezCosA8PIEzLTBdZaryURthM6hIvLhHcEfmhFAG86iY0ty2zOhX4OM0xwqK5z_u5D-BZLzpv6ET-JvSGUNELEAN4fWO2OM5bhZI74TE058xixCt8WWpUzCrTVjEnjWI-gJeEqZz0FHbGFu1xC_wkYvzKt6VOuVaC8wA2OyjlrQJb5j9xFMDT_jGqHtpPKio3OyeZLEb7pIUM4H4D177PXEmVZpJt_LvxJ3AN4Znvjyd7D-F6gg5jk0y6CYPV4tw9gqv2y-pkuXjcLq4QPl82UH8ArCNkog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Selection+for+Exponential+Power+Mixture+Regression+Models&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Yunlu&rft.au=Liu%2C+Jiangchuan&rft.au=Zou%2C+Hang&rft.au=Huang%2C+Xiaowen&rft.date=2024-05-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=26&rft.issue=5&rft_id=info:doi/10.3390%2Fe26050422&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon