Model Selection for Exponential Power Mixture Regression Models

Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 26; číslo 5; s. 422
Hlavní autoři: Jiang, Yunlu, Liu, Jiangchuan, Zou, Hang, Huang, Xiaowen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.05.2024
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Finite mixture of linear regression (FMLR) models are among the most exemplary statistical tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to simultaneously determine the number of components and perform variable selection for the different regressions for FMLR models via an exponential power error distribution, which includes normal distributions and Laplace distributions as special cases. Under some regularity conditions, the consistency of order selection and the consistency of variable selection are established, and the asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM) algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the numerical simulations to demonstrate the finite sample performance of the proposed methodology. Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that our proposed method obtains a smaller BIC value than the existing method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e26050422