Lightweight deep deterministic policy gradient for edge computing in recirculating aquaculture systems: real-time feeding control with reduced computational requirements
The deployment of advanced reinforcement learning algorithms in edge computing environments presents significant challenges for real-time aquaculture management, particularly in resource-constrained recirculating aquaculture systems (RAS). Building upon our previous work demonstrating superior perfo...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 37960 - 24 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
30.10.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The deployment of advanced reinforcement learning algorithms in edge computing environments presents significant challenges for real-time aquaculture management, particularly in resource-constrained recirculating aquaculture systems (RAS). Building upon our previous work demonstrating superior performance of DDPG controllers in commercial RAS operations, this research introduces a lightweight DDPG architecture specifically optimized for edge computing deployment in recirculating aquaculture systems. The Edge-DDPG framework reduces computational complexity by 85% while maintaining 92% of the original model’s performance accuracy. The lightweight architecture employs compact neural networks with reduced layer dimensions (64→32→1 neurons vs. 400→300→1 in the original), memory-efficient replay buffers (5,000 vs. 100,000 capacity), and CPU-optimized operations suitable for ARM-based edge devices. Experimental validation demonstrates consistent performance with average inference times of 15.2 ± 3.1 ms on Raspberry Pi 4B, enabling real-time control within 50 ms system response requirements. The edge-optimized controller achieved 94.3% feeding accuracy and 96.1% water quality stability while consuming only 47 ± 8 MB of system memory. Economic analysis demonstrates deployment cost reductions from $56,900 to $8,400 for large-scale implementations, enabling widespread adoption of intelligent feeding control in small to medium-scale aquaculture operations. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-025-21677-0 |