Lightweight deep deterministic policy gradient for edge computing in recirculating aquaculture systems: real-time feeding control with reduced computational requirements

The deployment of advanced reinforcement learning algorithms in edge computing environments presents significant challenges for real-time aquaculture management, particularly in resource-constrained recirculating aquaculture systems (RAS). Building upon our previous work demonstrating superior perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 37960 - 24
Hauptverfasser: Elmessery, Wael M., Shams, Mahmoud Y., El-Hafeez, Tarek Abd, Szűcs, Péter, Eid, Mohamed Hamdy, Alhumedi, M., Ahmed, Atef Fathy, Elwakeel, Abdallah Elshawadfy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 30.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deployment of advanced reinforcement learning algorithms in edge computing environments presents significant challenges for real-time aquaculture management, particularly in resource-constrained recirculating aquaculture systems (RAS). Building upon our previous work demonstrating superior performance of DDPG controllers in commercial RAS operations, this research introduces a lightweight DDPG architecture specifically optimized for edge computing deployment in recirculating aquaculture systems. The Edge-DDPG framework reduces computational complexity by 85% while maintaining 92% of the original model’s performance accuracy. The lightweight architecture employs compact neural networks with reduced layer dimensions (64→32→1 neurons vs. 400→300→1 in the original), memory-efficient replay buffers (5,000 vs. 100,000 capacity), and CPU-optimized operations suitable for ARM-based edge devices. Experimental validation demonstrates consistent performance with average inference times of 15.2 ± 3.1 ms on Raspberry Pi 4B, enabling real-time control within 50 ms system response requirements. The edge-optimized controller achieved 94.3% feeding accuracy and 96.1% water quality stability while consuming only 47 ± 8 MB of system memory. Economic analysis demonstrates deployment cost reductions from $56,900 to $8,400 for large-scale implementations, enabling widespread adoption of intelligent feeding control in small to medium-scale aquaculture operations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-21677-0