New inertial proximal gradient methods for unconstrained convex optimization problems
The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algo...
Saved in:
| Published in: | Journal of inequalities and applications Vol. 2020; no. 1; pp. 1 - 18 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
07.12.2020
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algorithm. Under reasonable parameters, we prove that our algorithms strongly converge to some solution of the problem, which is the unique solution of a variational inequality problem. Secondly, we propose an inexact alternated inertial proximal point algorithm. Under suitable conditions, the weak convergence theorem is proved. Finally, numerical results illustrate the performances of our algorithms and present a comparison with related algorithms. Our results improve and extend the corresponding results reported by many authors recently. |
|---|---|
| AbstractList | The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algorithm. Under reasonable parameters, we prove that our algorithms strongly converge to some solution of the problem, which is the unique solution of a variational inequality problem. Secondly, we propose an inexact alternated inertial proximal point algorithm. Under suitable conditions, the weak convergence theorem is proved. Finally, numerical results illustrate the performances of our algorithms and present a comparison with related algorithms. Our results improve and extend the corresponding results reported by many authors recently. Abstract The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algorithm. Under reasonable parameters, we prove that our algorithms strongly converge to some solution of the problem, which is the unique solution of a variational inequality problem. Secondly, we propose an inexact alternated inertial proximal point algorithm. Under suitable conditions, the weak convergence theorem is proved. Finally, numerical results illustrate the performances of our algorithms and present a comparison with related algorithms. Our results improve and extend the corresponding results reported by many authors recently. |
| ArticleNumber | 255 |
| Author | Zhang, Yiqun Bu, Qinxiong Duan, Peichao |
| Author_xml | – sequence: 1 givenname: Peichao surname: Duan fullname: Duan, Peichao email: pcduancauc@126.com organization: College of Science, Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China – sequence: 2 givenname: Yiqun surname: Zhang fullname: Zhang, Yiqun organization: College of Science, Civil Aviation University of China – sequence: 3 givenname: Qinxiong surname: Bu fullname: Bu, Qinxiong organization: College of Science, Civil Aviation University of China |
| BookMark | eNp9UcFuGyEURJUjJU7yAzmt1PMm8Bazu8cqatNIUXNppNwQCw8Xaw0u4NTN1wd7WzXqwQfEE5qZN8PMycwHj4RcMXrNWCduEmuEoDWF_VkA1OIDOWMU-ho4PM_ezadkntKKUmBNx8_I0zf8VTmPMTs1VpsYdm5dhmVUxqHP1Rrzj2BSZUOstl4Hn3JUBW-qMr_grgqb7NbuVWUX_J4_jLhOF-TEqjHh5Z_7nDx9-fz99mv98Hh3f_vpodYc-lybBtWwoFoIrrRVRiBl1loUoAz0tmW8YYO2IDqN3EDTdraDXvfYAAzY0uac3E-6JqiV3MTiPf6WQTl5eAhxKVVJpkeUgxBa9b0Gs7B8aLtBo-K2R2qRCsYXRevjpFVC_NxiynIVttEX-xJ4WzYyaFlBdRNKx5BSRCu1y4fw-38ZJaNyX4icCpGlEHkoRIpChf-ofw0fJTUTKRWwX2L85-oI6w2dTaJA |
| CitedBy_id | crossref_primary_10_1186_s13660_023_03049_2 crossref_primary_10_1016_j_heliyon_2023_e20513 crossref_primary_10_1007_s11075_024_01788_x |
| Cites_doi | 10.1007/s11590-011-0418-8 10.1007/s10589-015-9777-x 10.1186/s13660-015-0857-3 10.1186/s13660-016-1242-6 10.1088/1361-6420/33/4/044008 10.1007/s10957-011-9837-z 10.1080/10556788.2017.1396601 10.1111/j.1475-3995.2009.00695.x 10.1016/j.jmaa.2006.06.055 10.1137/080716542 10.1017/CBO9780511526152 10.1088/0266-5611/27/4/045009 10.1186/s13660-018-1695-x 10.1016/0041-5553(64)90137-5 10.1088/0266-5611/26/6/065008 10.19139/124 10.1007/s11590-020-01603-1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1186/s13660-020-02522-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1029-242X |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_b66ca99c2d5f4b78bcea4f9e0fe06145 10_1186_s13660_020_02522_6 |
| GrantInformation_xml | – fundername: Foundation of Tianjin Key Lab for Advanced Signal Processing grantid: 2019ASP-TJ04 – fundername: Scientific research project of Tianjin Municipal Education Commission grantid: 2019KJ133 |
| GroupedDBID | -A0 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 D-I DU5 EBLON EBS ESX GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A ~8M AASML AAYXX AMVHM CITATION OVT 7TB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c429t-d3eab50c664acfad6e01fffe62ad29f71431bcf268ce4d2378f829c9e322be703 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598414900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-242X 1025-5834 |
| IngestDate | Fri Oct 03 12:44:36 EDT 2025 Sat Oct 18 22:44:40 EDT 2025 Sat Nov 29 06:10:36 EST 2025 Tue Nov 18 20:50:39 EST 2025 Fri Feb 21 02:33:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 47H10 Alternated inertial acceleration Inertial acceleration Convex optimization 90C25 47H09 65K10 Proximal operator 47J25 Viscosity approximation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-d3eab50c664acfad6e01fffe62ad29f71431bcf268ce4d2378f829c9e322be703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1186/s13660-020-02522-6 |
| PQID | 2473221271 |
| PQPubID | 237789 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b66ca99c2d5f4b78bcea4f9e0fe06145 proquest_journals_2473221271 crossref_citationtrail_10_1186_s13660_020_02522_6 crossref_primary_10_1186_s13660_020_02522_6 springer_journals_10_1186_s13660_020_02522_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-07 |
| PublicationDateYYYYMMDD | 2020-12-07 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of inequalities and applications |
| PublicationTitleAbbrev | J Inequal Appl |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Guo, Cui (CR8) 2018; 2018 Davidi, Herman, Censor (CR4) 2009; 16 Geobel, Kirk (CR7) 1990 Nesterov (CR18) 1983; 269 Shehu, Gibali (CR21) 2020 Censor, Davidi, Herman (CR3) 2010; 26 Mu, Peng (CR17) 2015; 3 Beck, Teboulle (CR1) 2009; 2 Mangasarian, Meyer, Robinson, Auslender (CR13) 1978 Marino, Xu (CR14) 2007; 329 Jin, Censor, Jiang (CR11) 2016; 63 Polyak (CR19) 1964; 4 Moreau (CR16) 1963; 256 Xu (CR22) 2011; 150 Xu (CR24) 2017; 33 Polyak (CR20) 1987 Dong, Zhao, He (CR5) 2016; 2016 Yao, Cho, Kang, Zhu (CR25) 2014; 2014 Boikanyo, Morosanu (CR2) 2013; 72 He, Yang (CR9) 2013; 2013 Mahammand, Naseer, Xu (CR12) 2013; 8 Duan, Song (CR6) 2015; 2015 Micchelli, Shen, Xu (CR15) 2011; 27 Xu (CR23) 2014; 35B Iutzeler, Hendricks (CR10) 2019; 34 O.A. Boikanyo (2522_CR2) 2013; 72 C.A. Micchelli (2522_CR15) 2011; 27 H.K. Xu (2522_CR22) 2011; 150 H.K. Xu (2522_CR23) 2014; 35B Z.G. Mu (2522_CR17) 2015; 3 F. Iutzeler (2522_CR10) 2019; 34 Z.S. Yao (2522_CR25) 2014; 2014 B.T. Polyak (2522_CR19) 1964; 4 G. Marino (2522_CR14) 2007; 329 Y. Censor (2522_CR3) 2010; 26 B.T. Polyak (2522_CR20) 1987 R. Davidi (2522_CR4) 2009; 16 O.L. Mangasarian (2522_CR13) 1978 J.J. Moreau (2522_CR16) 1963; 256 A.A. Mahammand (2522_CR12) 2013; 8 Y. Nesterov (2522_CR18) 1983; 269 Q.L. Dong (2522_CR5) 2016; 2016 W. Jin (2522_CR11) 2016; 63 K. Geobel (2522_CR7) 1990 A. Beck (2522_CR1) 2009; 2 Y. Shehu (2522_CR21) 2020 P.C. Duan (2522_CR6) 2015; 2015 S.N. He (2522_CR9) 2013; 2013 H.K. Xu (2522_CR24) 2017; 33 Y.N. Guo (2522_CR8) 2018; 2018 |
| References_xml | – volume: 8 year: 2013 ident: CR12 article-title: Properties and iterative methods for -lasso publication-title: Abstr. Appl. Anal. – volume: 72 start-page: 415 year: 2013 end-page: 420 ident: CR2 article-title: Strong convergence of a proximal point algorithm with bounded error sequence publication-title: Optim. Lett. doi: 10.1007/s11590-011-0418-8 – volume: 63 start-page: 365 year: 2016 end-page: 392 ident: CR11 article-title: Bounded perturbation resilience of projected scaled gradient methods publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9777-x – volume: 2015 year: 2015 ident: CR6 article-title: General viscosity iterative approximation for solving unconstrained convex optimization problems publication-title: J. Inequal. Appl. doi: 10.1186/s13660-015-0857-3 – volume: 269 start-page: 543 year: 1983 end-page: 547 ident: CR18 article-title: A method for solving the convex programming problem with convergence rate publication-title: Dokl. Akad. Nauk SSSR – volume: 2016 year: 2016 ident: CR5 article-title: Bounded perturbation resilience of the viscosity algorithm publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1242-6 – volume: 33 year: 2017 ident: CR24 article-title: Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method publication-title: Inverse Probl. doi: 10.1088/1361-6420/33/4/044008 – volume: 150 start-page: 360 year: 2011 end-page: 378 ident: CR22 article-title: Averaged mappings and the gradient-projection algorithm publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9837-z – volume: 2014 year: 2014 ident: CR25 article-title: A regularized algorithm for the proximal split feasibility problem publication-title: Abstr. Appl. Anal. – volume: 34 start-page: 383 year: 2019 end-page: 405 ident: CR10 article-title: A generic online acceleration scheme for optimization algorithms via relaxation and inertia publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2017.1396601 – volume: 16 start-page: 505 year: 2009 end-page: 524 ident: CR4 article-title: Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections publication-title: Int. Trans. Oper. Res. doi: 10.1111/j.1475-3995.2009.00695.x – volume: 329 start-page: 336 year: 2007 end-page: 346 ident: CR14 article-title: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.06.055 – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: CR1 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – year: 1987 ident: CR20 publication-title: Introduction to Optimization – volume: 256 start-page: 1069 year: 1963 end-page: 1071 ident: CR16 article-title: Proprietes des applications ‘prox’ publication-title: C. R. Acad. Sci. Paris Sér. A Math. – year: 1990 ident: CR7 publication-title: Topics in Metric Fixed Point Theory doi: 10.1017/CBO9780511526152 – year: 1978 ident: CR13 article-title: Minimisation de fonctions localement Lipschitiziwnnes: appligramming a la programmation mi-convexe, mi-differential publication-title: Nonlinear Programming 3 – volume: 27 year: 2011 ident: CR15 article-title: Proximity algorithms for image models: denoising publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/4/045009 – volume: 2018 year: 2018 ident: CR8 article-title: Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1695-x – volume: 2013 year: 2013 ident: CR9 article-title: Solving the variational inequality problem defined on intersection of finite level sets publication-title: Abstr. Appl. Anal. – volume: 4 start-page: 1 year: 1964 end-page: 17 ident: CR19 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 26 year: 2010 ident: CR3 article-title: Perturbation resilience and superiorization of iterative algorithms publication-title: Inverse Probl. doi: 10.1088/0266-5611/26/6/065008 – volume: 3 start-page: 241 year: 2015 end-page: 248 ident: CR17 article-title: A note on the inertial proximal point method publication-title: Stat. Optim. Inf. Comput. doi: 10.19139/124 – volume: 35B start-page: 1 issue: 3 year: 2014 end-page: 18 ident: CR23 article-title: Properties and iterative methods for the lasso and its variants publication-title: Chin. Ann. Math. – year: 2020 ident: CR21 article-title: New inertial relaxed method for solving split feasibilities publication-title: Optim. Lett. doi: 10.1007/s11590-020-01603-1 – volume: 34 start-page: 383 year: 2019 ident: 2522_CR10 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2017.1396601 – volume: 72 start-page: 415 year: 2013 ident: 2522_CR2 publication-title: Optim. Lett. doi: 10.1007/s11590-011-0418-8 – volume: 33 year: 2017 ident: 2522_CR24 publication-title: Inverse Probl. doi: 10.1088/1361-6420/33/4/044008 – volume: 3 start-page: 241 year: 2015 ident: 2522_CR17 publication-title: Stat. Optim. Inf. Comput. doi: 10.19139/124 – year: 2020 ident: 2522_CR21 publication-title: Optim. Lett. doi: 10.1007/s11590-020-01603-1 – volume: 2015 year: 2015 ident: 2522_CR6 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-015-0857-3 – volume: 150 start-page: 360 year: 2011 ident: 2522_CR22 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9837-z – volume: 8 year: 2013 ident: 2522_CR12 publication-title: Abstr. Appl. Anal. – volume: 26 year: 2010 ident: 2522_CR3 publication-title: Inverse Probl. doi: 10.1088/0266-5611/26/6/065008 – volume: 2018 year: 2018 ident: 2522_CR8 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1695-x – volume: 63 start-page: 365 year: 2016 ident: 2522_CR11 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9777-x – volume: 35B start-page: 1 issue: 3 year: 2014 ident: 2522_CR23 publication-title: Chin. Ann. Math. – volume-title: Nonlinear Programming 3 year: 1978 ident: 2522_CR13 – volume: 4 start-page: 1 year: 1964 ident: 2522_CR19 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 2016 year: 2016 ident: 2522_CR5 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1242-6 – volume: 2014 year: 2014 ident: 2522_CR25 publication-title: Abstr. Appl. Anal. – volume: 2 start-page: 183 year: 2009 ident: 2522_CR1 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume-title: Introduction to Optimization year: 1987 ident: 2522_CR20 – volume-title: Topics in Metric Fixed Point Theory year: 1990 ident: 2522_CR7 doi: 10.1017/CBO9780511526152 – volume: 27 year: 2011 ident: 2522_CR15 publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/4/045009 – volume: 256 start-page: 1069 year: 1963 ident: 2522_CR16 publication-title: C. R. Acad. Sci. Paris Sér. A Math. – volume: 329 start-page: 336 year: 2007 ident: 2522_CR14 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.06.055 – volume: 2013 year: 2013 ident: 2522_CR9 publication-title: Abstr. Appl. Anal. – volume: 269 start-page: 543 year: 1983 ident: 2522_CR18 publication-title: Dokl. Akad. Nauk SSSR – volume: 16 start-page: 505 year: 2009 ident: 2522_CR4 publication-title: Int. Trans. Oper. Res. doi: 10.1111/j.1475-3995.2009.00695.x |
| SSID | ssj0021384 ssib044744598 ssib008501289 |
| Score | 2.2234423 |
| Snippet | The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact... Abstract The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Alternated inertial acceleration Analysis Applications of Mathematics Computational geometry Convergence Convex analysis Convex optimization Convexity Inertial acceleration Mathematics Mathematics and Statistics Optimization Proximal operator Viscosity approximation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXOXjTYppmk-ao4uJBxIOKt5CnLKyrbFfx5ztJU3UF9eKttGmZziMz0858g9CBdMxJGz8vOSMLUApeSOp0ITzRPhDfJwlI--5SXF3V9_fy-suor1gT1sIDt4w7NpxbLaWlrh-YEbWxXrMgPQk-JjMJvZQI2SVTOdUqq5p1LTI1P27KinNSxFQJfDykX3zGDSW0_pkQ89tf0eRsBitoKUeJ-KSlbhXN-fEaWs4RI8722KyjW9ijcGzfAzsd4ViSMnyEg4dJKuSa4nY-dIMhMsXgwGIsGEdCwDNStfkbfoId4zG3YuI8XKbZQLeD85uziyIPSigsuJNp4SqvTZ9Yzpm2QTvuSRlC8JxqR2WII85LYwPltfXM0UrUoabSSg_WbDzY_CaaHz-N_RbCkotgBQ19og1jwugysEpYTZgNEEnSHio7vimbUcQj5SOVsomaq5bXCnitEq8V76HDj3ueWwyNX1efRnF8rIz41-kEaIXKWqH-0ooe2u2EqbJRNooyAS9cUlH20FEn4M_LP5O0_R8k7aBFGhUwlsKIXTQ_nbz4PbRgX6fDZrKf1Pcd33X0rQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxUxEJ8oepCDKGp4iqYHb7ph2-3240TQSDwoMVEMt6afhATew7cP4p9vp6-7BBO5eNvsdps2M_3NTDudH8BbHXjQHreXgtNNVgrRaBZsI2NrY2pj35ZC2j-_yKMjdXKiv9UNt6GmVY6YWIA6LDzuke8xLrPuUSbp_uWvBlmj8HS1UmjchwdYJYGW1L3vkz6pHuF3MtecS857PZ0yMNoVRmKKlK696vh4qUaJvYF2QrQNBlf5aw7YxC3DVer733JK_zpHLebpcOt_J_YEHlfHlBysNekp3IvzbdiqTiqpEDBsw-bXqdDr8AyOM0gSvD-YgeKcYE7M2UV-OF2WTLIVWRNUDyS7xiRbUHRGkZMi91jS3X-TRYasi3oXlFR2m-E5HB9--vHxc1OZGhqf7dmqCV20rm-9ENz6ZIOILU0pRcFsYDohxzp1PjGhfOSBdVIlxbTXMc_cxQw6L2BjvpjHHSBayOQlS31rXRaYszTxTnrbcp-yK8tmQEcxGF_LmOPIz00JZ5Qwa9GZLDpTRGfEDN5N_1yui3jc2foDSndqiQW4y4vF8tTU9WycEN5q7VnoE3dSOR8tTzq2KWKM3c9gd5S2qagwmBtRz-D9qC83n_89pJd39_YKHjHUVMyykbuwsVpexdfw0F-vzoblm7Im_gCc-A8A priority: 102 providerName: ProQuest |
| Title | New inertial proximal gradient methods for unconstrained convex optimization problems |
| URI | https://link.springer.com/article/10.1186/s13660-020-02522-6 https://www.proquest.com/docview/2473221271 https://doaj.org/article/b66ca99c2d5f4b78bcea4f9e0fe06145 |
| Volume | 2020 |
| WOSCitedRecordID | wos000598414900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044744598 issn: 1029-242X databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1029-242X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021384 issn: 1029-242X databaseCode: C24 dateStart: 20051201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcAQtBzhQKCAWysoHbhARO44dH2nVCgRdRUBR4WL5WVVqd9FmQXw-Y6-zqAiQ4GJFyThyJvO05wHwVHnulUvbS96qColCVIp5U8lQmxDr0Na5kPbHt3I2605PVV-SwoYx2n08ksySOrN1J14MtBGirpK7g3oaXShxHbZb2qkUyHeQchyKm0Wbjo_pMb-dd0UF5Ur9V8zLX05Es6I52vm_Jd6B28WwJC_XlHAXroX5LuwUI5MUFh524dbxplDrcA9OUMiRlP-HjH5BUkzL-SVenC1zJNiKrBtMDwRNW4IaMBmTqacEvjGHq38nCxQ5lyWXk5TuNMN9ODk6_HDwqiqdFiqH-mhV-SYY29ZOCG5cNF6EmsYYg2DGMxVTj3RqXWSic4F71sgudkw5FVAc2IBC4wFszRfz8BCIEjI6yWJbG8u5tIZG3khnau4imqJsAnREvnalDHla-YXO7kgn9BqLGrGoMxa1mMCzzZwv6yIcf4XeT_90A5kKaOcbi-WZLvyorRDOKOWYbyO3srMuGB5VqGNIPnI7gb2RInTh6kEzLvGDKZN0As9HCvj5-M9LevRv4I_hJktElKJm5B5srZZfwxO44b6tzoflFLb3D2f9u2mm-mneRMDxjaymKXD1PY59-xmh-tfH_acf53QCcw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQk4UChFDBTwAU4QNXEcLweE2KpWMx1xaFFvxvFSVWpnymTY_hS_kWdnqYpEbz1wi-LEWfy9z8_28_sAnivHnLJxesnVKkNQ8ExRZzLhc-ND7qs8JdL-PBHTqTw8VJ9W4He_FyaGVfacmIjazW2cI9-iTCD2CiqKN2dfs6gaFVdXewmNFhZj_-sHDtma17sfsH1fULr9cf_9TtapCmQWuXeZudKbusot58zYYBz3eRFC8JwaR1WIeuBFbQPl0nrmaClkkFRZ5fHxtUcDwXqvwXVWShHtaiyyAb-yinQ_uAeMCcYqNaxq0KJMCshFlJCtZMn6TTySbzVFyXmexcEcluIAkV_oKJOewAUn-K9129Qdbq_9bz_yLtzpHG_ytrWUe7DiZ-uw1jnhpKO4Zh1u7w2JbJv7cICdAIn7I5EIT0iM-Tk-xYOjRYqUW5JWgLsh6PoT9BCisx01N7DGFM7_k8yRkk-7va6kU-9pNuDgSj71AazO5jP_EIjiIlhBQ5WbGgFSmyKwUliTMxvQVacjKPpm17ZL0x7f_ESn4ZrkuoWKRqjoBBXNR_ByuOesTVJy6dXvIpqGK2OC8XRivjjSHV_pmnNrlLLUVYHVQtbWGxaUz4OPcwjVCDZ7dOmO9Rp9Dq0RvOrxeV7871d6dHltz-Dmzv7eRE92p-PHcItGK4kRRWITVpeLb_4J3LDfl8fN4mmyRwJfrhq3fwBn2m4x |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghA9UCggFgr4ACeINnEcOz4gBJQVVctqDxRVXFzHH1WldrfdLF9_jV_H2OukKhK99cAtih3LSZ6fZ-zxPIDn0jIrTVheso3MEBQ8k9TqTLhcO5-7Ko-JtL_sivG43t-XkxX43Z2FCWGVHSdGorYzE9bIh5QJxF5BRTH0KSxisjV6c3qWBQWpsNPayWksIbLjfv1A9619vb2F__oFpaMPn99_zJLCQGaQhxeZLZ1uqtxwzrTx2nKXF957x6m2VPqgDV40xlNeG8csLUXtayqNdNiVxuFgwXavwXWBPmYIJ5xUX3ss11Wg_t5UYEwwVsl-h4MWZVRDLoKcbFWXrDvQU_NhW5Sc51lw7LAUnUV-YdKM2gIXDOK_9nDj1Dha_58_6h24nQxy8nY5gu7CiptuwHoyzkmivnYD1j71CW7be7CHkwMJ5yaRII9JiAU6OsGLw3mMoFuQpTB3S9AlIGg5BCM8aHFgizHM_yeZIVWfpDOwJKn6tPdh70pe9QGsTmdT9xCI5MIbQX2V6wbB0ujCs1IYnTPj0YSnAyg6CCiT0reHnh-r6MbVXC1hoxA2KsJG8QG87J85XSYvubT2u4CsvmZIPB5vzOaHKvGYajg3WkpDbeVZI-rGOM28dLl3YW2hGsBmhzSV2LBV5zAbwKsOq-fF_-7So8tbewY3Ea5qd3u88xhu0TBgQqCR2ITVxfybewI3zPfFUTt_GocmgYOrhu0fPjl3VQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+inertial+proximal+gradient+methods+for+unconstrained+convex+optimization+problems&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Duan%2C+Peichao&rft.au=Zhang%2C+Yiqun&rft.au=Bu%2C+Qinxiong&rft.date=2020-12-07&rft.issn=1029-242X&rft.eissn=1029-242X&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-020-02522-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13660_020_02522_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |