New inertial proximal gradient methods for unconstrained convex optimization problems

The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2020; číslo 1; s. 1 - 18
Hlavní autoři: Duan, Peichao, Zhang, Yiqun, Bu, Qinxiong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 07.12.2020
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The proximal gradient method is a highly powerful tool for solving the composite convex optimization problem. In this paper, firstly, we propose inexact inertial acceleration methods based on the viscosity approximation and proximal scaled gradient algorithm to accelerate the convergence of the algorithm. Under reasonable parameters, we prove that our algorithms strongly converge to some solution of the problem, which is the unique solution of a variational inequality problem. Secondly, we propose an inexact alternated inertial proximal point algorithm. Under suitable conditions, the weak convergence theorem is proved. Finally, numerical results illustrate the performances of our algorithms and present a comparison with related algorithms. Our results improve and extend the corresponding results reported by many authors recently.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-020-02522-6