Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis
Without non-linear basis functions many problems can not be solved by linear algorithms. This article proposes a method to automatically construct such basis functions with slow feature analysis (SFA). Non-linear optimization of this unsupervised learning method generates an orthogonal basis on the...
Uložené v:
| Vydané v: | Machine learning Ročník 89; číslo 1-2; s. 67 - 86 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.10.2012
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!