Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis

Without non-linear basis functions many problems can not be solved by linear algorithms. This article proposes a method to automatically construct such basis functions with slow feature analysis (SFA). Non-linear optimization of this unsupervised learning method generates an orthogonal basis on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 89; číslo 1-2; s. 67 - 86
Hlavní autoři: Böhmer, Wendelin, Grünewälder, Steffen, Nickisch, Hannes, Obermayer, Klaus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.10.2012
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Without non-linear basis functions many problems can not be solved by linear algorithms. This article proposes a method to automatically construct such basis functions with slow feature analysis (SFA). Non-linear optimization of this unsupervised learning method generates an orthogonal basis on the unknown latent space for a given time series. In contrast to methods like PCA, SFA is thus well suited for techniques that make direct use of the latent space. Real-world time series can be complex, and current SFA algorithms are either not powerful enough or tend to over-fit. We make use of the kernel trick in combination with sparsification to develop a kernelized SFA algorithm which provides a powerful function class for large data sets. Sparsity is achieved by a novel matching pursuit approach that can be applied to other tasks as well. For small data sets, however, the kernel SFA approach leads to over-fitting and numerical instabilities. To enforce a stable solution, we introduce regularization to the SFA objective. We hypothesize that our algorithm generates a feature space that resembles a Fourier basis in the unknown space of latent variables underlying a given real-world time series . We evaluate this hypothesis at the example of a vowel classification task in comparison to sparse kernel PCA . Our results show excellent classification accuracy and demonstrate the superiority of kernel SFA over kernel PCA in encoding latent variables.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-012-5300-0