Low-Complexity Reliability-Based Message-Passing Decoder Architectures for Non-Binary LDPC Codes

Non-binary low-density parity-check (NB-LDPC) codes can achieve better error-correcting performance than their binary counterparts at the cost of higher decoding complexity when the codeword length is moderate. The recently developed iterative reliability-based majority-logic NB-LDPC decoding has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems Jg. 20; H. 11; S. 1938 - 1950
Hauptverfasser: Zhang, Xinmiao, Cai, Fang, Lin, Shu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.11.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1063-8210, 1557-9999
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-binary low-density parity-check (NB-LDPC) codes can achieve better error-correcting performance than their binary counterparts at the cost of higher decoding complexity when the codeword length is moderate. The recently developed iterative reliability-based majority-logic NB-LDPC decoding has better performance-complexity tradeoffs than previous algorithms. This paper first proposes enhancement schemes to the iterative hard reliability-based majority-logic decoding (IHRB-MLGD). Compared to the IHRB algorithm, our enhanced (E-)IHRB algorithm can achieve significant coding gain with small hardware overhead. Then low-complexity partial-parallel NB-LDPC decoder architectures are developed based on these two algorithms. Many existing NB-LDPC code construction methods lead to quasi-cyclic or cyclic codes. Both types of codes are considered in our design. Moreover, novel schemes are developed to keep a small proportion of messages in order to reduce the memory requirement without causing noticeable performance loss. In addition, a shift-message structure is proposed by using memories concatenated with variable node units to enable efficient partial-parallel decoding for cyclic NB-LDPC codes. Compared to previous designs based on the Min-max decoding algorithm, our proposed decoders have at least tens of times lower complexity with moderate coding gain loss.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2011.2164951