Adaptive Distributed Estimation Based on Recursive Least-Squares and Partial Diffusion
Using the diffusion strategies, an unknown parameter vector can be estimated over an adaptive network by combining the intermediate estimates of neighboring nodes at each node. We propose an extension to the diffusion recursive least-squares algorithm by allowing partial sharing of the entries of th...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 62; číslo 14; s. 3510 - 3522 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
15.07.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Using the diffusion strategies, an unknown parameter vector can be estimated over an adaptive network by combining the intermediate estimates of neighboring nodes at each node. We propose an extension to the diffusion recursive least-squares algorithm by allowing partial sharing of the entries of the intermediate estimate vectors among the neighbors. Accordingly, the proposed algorithm, termed partial-diffusion recursive least-squares (PDRLS), enables a trade-off between estimation performance and communication cost. We analyze the performance of the PDRLS algorithm and prove its convergence in both mean and mean-square senses. We also derive a theoretical expression for its steady-state mean-square deviation. Simulation results substantiate the efficacy of the PDRLS algorithm and demonstrate a good match between theory and experiment. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2014.2327005 |