Adaptive Distributed Estimation Based on Recursive Least-Squares and Partial Diffusion

Using the diffusion strategies, an unknown parameter vector can be estimated over an adaptive network by combining the intermediate estimates of neighboring nodes at each node. We propose an extension to the diffusion recursive least-squares algorithm by allowing partial sharing of the entries of th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 62; no. 14; pp. 3510 - 3522
Main Authors: Arablouei, Reza, Dogancay, Kutluyil, Werner, Stefan, Huang, Yih-Fang
Format: Journal Article
Language:English
Published: New York, NY IEEE 15.07.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the diffusion strategies, an unknown parameter vector can be estimated over an adaptive network by combining the intermediate estimates of neighboring nodes at each node. We propose an extension to the diffusion recursive least-squares algorithm by allowing partial sharing of the entries of the intermediate estimate vectors among the neighbors. Accordingly, the proposed algorithm, termed partial-diffusion recursive least-squares (PDRLS), enables a trade-off between estimation performance and communication cost. We analyze the performance of the PDRLS algorithm and prove its convergence in both mean and mean-square senses. We also derive a theoretical expression for its steady-state mean-square deviation. Simulation results substantiate the efficacy of the PDRLS algorithm and demonstrate a good match between theory and experiment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2327005