Solving the Assignment Problem Using Continuous-Time and Discrete-Time Improved Dual Networks

The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 23; číslo 5; s. 821 - 827
Hlavní autoři: Hu, Xiaolin, Wang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two versions of IDNNs are advantageous in circuit implementation due to their simple structures. Both of them are theoretically guaranteed to be globally convergent to a solution of the assignment problem if only the solution is unique.
AbstractList The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two versions of IDNNs are advantageous in circuit implementation due to their simple structures. Both of them are theoretically guaranteed to be globally convergent to a solution of the assignment problem if only the solution is unique.
The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two versions of IDNNs are advantageous in circuit implementation due to their simple structures. Both of them are theoretically guaranteed to be globally convergent to a solution of the assignment problem if only the solution is unique.The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two versions of IDNNs are advantageous in circuit implementation due to their simple structures. Both of them are theoretically guaranteed to be globally convergent to a solution of the assignment problem if only the solution is unique.
Author Xiaolin Hu
Jun Wang
Author_xml – sequence: 1
  givenname: Xiaolin
  surname: Hu
  fullname: Hu, Xiaolin
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25861858$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24806130$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNUbK39AwoyIII3syaZfJy5LOtXYVmFbsEbGTIzZ2rqTFKTTMV_b9ZdV-iF5ibh5HlP3pP3MTly3iEhTxldMEbr15v1enW54JTxBWegdQ0PyAlnipe8Ajg6nPXnY3IW4w3NS1GpRP2IHHMBVLGKnpAvl368s-66SF-xOI_RXrsJXSo-Bd-OOBVXcXu59C5ZN_s5lhs7YWFcX7yxsQuYcFe5mG6Dv8Ncns1YrDH98OFbfEIeDmaMeLbfT8nVu7eb5Ydy9fH9xfJ8VXaCiVR2qFED9AADtP3QVwIZGAWC13UvRa8YAkfZimrodMuEEgNWVBve9UjrPMgpebXrm018nzGmZsrucByNw2y6YZJXggoK-v8o5RykUoJn9MU99MbPweVBMsWolrLW24bP99TcTtg3t8FOJvxs_vxxBl7uARM7Mw7BuM7Gv5wExUBC5viO64KPMeBwQBhttpk3vzNvtpk3-8yzCO6JOptMsjmwYOz4b-mzndQi4uEtxaTUQla_AGwbt4Q
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_math12152360
crossref_primary_10_1080_02331934_2019_1705822
crossref_primary_10_1109_TNNLS_2015_2496658
crossref_primary_10_1016_j_neunet_2020_08_013
crossref_primary_10_1109_TSMC_2014_2332306
crossref_primary_10_1080_02331934_2023_2173525
crossref_primary_10_1016_j_neucom_2018_01_014
crossref_primary_10_1080_00207721_2025_2482859
crossref_primary_10_1093_comjnl_bxw003
crossref_primary_10_1109_TCSII_2012_2228400
crossref_primary_10_1016_j_neucom_2015_08_073
crossref_primary_10_1109_TNNLS_2013_2280905
crossref_primary_10_1109_TNNLS_2018_2836933
crossref_primary_10_1007_s11063_013_9321_x
crossref_primary_10_1016_j_neunet_2014_10_004
Cites_doi 10.1109/TNN.2007.912319
10.1109/TNNLS.2011.2178326
10.1109/TNN.2010.2054106
10.1109/TNN.2010.2052631
10.1049/el:19920664
10.1109/TSMCB.2009.2025700
10.1109/TNN.2009.2012517
10.1109/72.572114
10.1016/0893-6080(94)90081-7
10.1016/0893-6080(91)90039-8
10.1515/9781400841042
10.1109/72.655040
10.3934/jimo.2011.7.283
10.1109/TNN.2008.2003287
10.1016/S0925-2312(02)00627-6
10.1007/978-3-642-21738-8_33
10.1007/978-3-642-21105-8_63
10.1109/TNN.2010.2051455
10.1109/TNN.2010.2050781
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2012.2187798
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Technology Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 2162-2388
EndPage 827
ExternalDocumentID 2649644851
24806130
25861858
10_1109_TNNLS_2012_2187798
6155745
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c414t-ce7e788d88f8bdfd34e18a684299d54d61e82e5b43fc7b1464fe307a2cde09613
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303507000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 19:10:10 EDT 2025
Sat Sep 27 21:41:54 EDT 2025
Sun Nov 30 04:10:13 EST 2025
Thu Apr 03 07:04:30 EDT 2025
Mon Jul 21 09:15:00 EDT 2025
Sat Nov 29 01:39:45 EST 2025
Tue Nov 18 22:41:42 EST 2025
Tue Aug 26 17:19:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Analog circuit
Combinatorial problem
Analog circuits
assignment problem
Linear programming
Continuous time
sorting problem
Neural network
Combinatorial optimization
Quadratic programming
Sorting
Discrete time
Problem solving
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-ce7e788d88f8bdfd34e18a684299d54d61e82e5b43fc7b1464fe307a2cde09613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 24806130
PQID 1010755977
PQPubID 85436
PageCount 7
ParticipantIDs pascalfrancis_primary_25861858
crossref_primary_10_1109_TNNLS_2012_2187798
pubmed_primary_24806130
proquest_miscellaneous_1523404087
proquest_journals_1010755977
proquest_miscellaneous_1022856642
crossref_citationtrail_10_1109_TNNLS_2012_2187798
ieee_primary_6155745
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
haddad (ref17) 2008
ref14
ref20
li (ref19) 2010; 21
ref22
ref10
hu (ref15) 2009; 39
ref21
liu (ref11) 2009
knuth (ref23) 1973
ref2
ref1
ref16
liu (ref7) 2010; 21
ref18
ref8
kinderlehrer (ref12) 1980
ref4
ref3
ref6
ref5
cichocki (ref9) 1993
References_xml – ident: ref18
  doi: 10.1109/TNN.2007.912319
– ident: ref22
  doi: 10.1109/TNNLS.2011.2178326
– ident: ref20
  doi: 10.1109/TNN.2010.2054106
– ident: ref8
  doi: 10.1109/TNN.2010.2052631
– ident: ref2
  doi: 10.1049/el:19920664
– volume: 39
  start-page: 1640
  year: 2009
  ident: ref15
  article-title: An alternative recurrent neural network for solving variational inequalities and related optimization problems
  publication-title: IEEE Trans Syst Man Cybern B
  doi: 10.1109/TSMCB.2009.2025700
– ident: ref16
  doi: 10.1109/TNN.2009.2012517
– ident: ref4
  doi: 10.1109/72.572114
– year: 1993
  ident: ref9
  publication-title: Neural Networks for Optimization and Signal Processing
– ident: ref3
  doi: 10.1016/0893-6080(94)90081-7
– ident: ref1
  doi: 10.1016/0893-6080(91)90039-8
– year: 2008
  ident: ref17
  publication-title: Nonlinear Dynamical Systems and Control A Lyapunov-Based Approach
  doi: 10.1515/9781400841042
– ident: ref5
  doi: 10.1109/72.655040
– ident: ref21
  doi: 10.3934/jimo.2011.7.283
– start-page: 272
  year: 2009
  ident: ref11
  article-title: A discrete-time recurrent neural network with one neuron for $k$-winners-take-all operation
  publication-title: Proc 6th Int Symp Neural Netw
– ident: ref6
  doi: 10.1109/TNN.2008.2003287
– ident: ref10
  doi: 10.1016/S0925-2312(02)00627-6
– year: 1973
  ident: ref23
  publication-title: The Art of Computer Programming Sorting and Searching
– ident: ref14
  doi: 10.1007/978-3-642-21738-8_33
– ident: ref13
  doi: 10.1007/978-3-642-21105-8_63
– volume: 21
  start-page: 1365
  year: 2010
  ident: ref19
  article-title: Delay-derivative-dependent stability for delayed neural networks with unbounded distributed delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2051455
– volume: 21
  start-page: 1140
  year: 2010
  ident: ref7
  article-title: A novel recurrent neural network with one neuron and finite-time convergence for $k$-winners-take-all operation
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2050781
– year: 1980
  ident: ref12
  publication-title: An Introduction to Variational Inequalities and Their Applications
SSID ssj0000605649
Score 2.1446428
Snippet The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 821
SubjectTerms Algorithms
Analog circuits
Applied sciences
Artificial intelligence
assignment problem
Biological neural networks
Circuits
Combinatorial analysis
Computer science; control theory; systems
Connectionism. Neural networks
Convergence
Decision Support Techniques
Equations
Exact sciences and technology
Game Theory
Learning
Learning systems
linear programming
Networks
Neural networks
Neural Networks (Computer)
Neurons
Optimization
Pattern Recognition, Automated - methods
quadratic programming
sorting problem
Trajectory
Upper bound
Title Solving the Assignment Problem Using Continuous-Time and Discrete-Time Improved Dual Networks
URI https://ieeexplore.ieee.org/document/6155745
https://www.ncbi.nlm.nih.gov/pubmed/24806130
https://www.proquest.com/docview/1010755977
https://www.proquest.com/docview/1022856642
https://www.proquest.com/docview/1523404087
Volume 23
WOSCitedRecordID wos000303507000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVJ6KGXpmn6sWmyqNBbq2Qty5J8LE1CD8UEksJeirGlUVkI3hCv-_szI3ldAm2gN2PLtuynGb2RRnqMffSNsa0GL6R2hVCubAXCLIV3IQ-hUTa0bRSbMFVll8vyaod9ntbCAEBMPoNTOoxz-X7tBhoqO6M5NKOKXbZrjE5rtabxlAXych3Zrsy0FDI3y-0amUV5dlNV368pkUueYp9mTEk6fVJZ6s0Wj7qkqLFCGZJNjz8pJHWLf9PP2A1d7v_fB7xkL0a6yb-k9nHAdqB7xfa3Ug58tOxD9vN6fUtDCxz5IEfIVr9ilgC_SnozPGYWcNrKatUN66EXtHSEN53n5yt0PMi805k0RgF4esDXVinHvH_Nflxe3Hz9JkblBeFUpjbCgQGMjb21wbY--FxBZhuasitLXyivM7ASilblwZkWna0KgM6ikc4Dacjkb9het-7gHeMOfQZibhx4jDwx3jZBax_wiSCdzGHGsu3Pr924LTmpY9zWMTxZlHXEribs6hG7Gfs03XOXNuV4svQhITGVHEGYsfkjjKfrsrAaWQzed7wFvR4Nu6eMOCRZtGnfjH2YLqNJ0jxL0wEiUFMQbZEmK_lEmULmCh2oxee8TQ3qTwXGdnn094q_Z8_p81LW5THb29wPcMKeud-bVX8_R9tY2nm0jQcDDglJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9UwFA5zCvri1Km7OmcE3zRbm6ZN-ijqmHgtg13hvkhpkxO5MHrHeuvv95yktzLQgW8lTdq0X3LyneQkH2NvXaNNW4ATsrC5ULZsBcIshbM-875RxrdtEJvQVWWWy_J8h72f9sIAQAg-g2O6DGv5bm0Hmio7oTU0rfI77G6ulEzibq1pRiVBZl4EvivTQgqZ6eV2l0xSniyqan5BoVzyGEc1rUtS6pPK0HiW3BiUgsoKxUg2Pf4mH_Ut_k1Aw0B0uvd_n_CIPRwJJ_8QW8hjtgPdE7a3FXPgY9_eZz8u1pc0ucCREXIEbfUzxAnw86g4w0NsAafDrFbdsB56QZtHeNM5_mmFpge5d0yJsxSAyQO-topR5v1T9v308-LjmRi1F4RVqdoICxrQO3bGeNM67zIFqWlo0a4sXa5ckYKRkLcq81a3aG6VBzQXjbQOSEUme8Z2u3UHB4xbtBqIurbg0PdEj1v7onAenwjSygxmLN3-_NqOB5OTPsZlHRyUpKwDdjVhV4_Yzdi7qcxVPJbj1tz7hMSUcwRhxo5uYDzdl7kpkMdgucMt6PXYtXuKiUOaRcf2zdib6TZ2SlppaTpABGpyow0SZSVvyZPLTKEJNfic57FB_anA2C5f_L3ir9n9s8W3eT3_Un19yR7Qp8YYzEO2u7ke4BW7Z39tVv31UeghvwGu_guo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+Assignment+Problem+Using+Continuous-Time+and+Discrete-Time+Improved+Dual+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiaolin+Hu&rft.au=Jun+Wang&rft.date=2012-05-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=23&rft.issue=5&rft.spage=821&rft.epage=827&rft_id=info:doi/10.1109%2FTNNLS.2012.2187798&rft_id=info%3Apmid%2F24806130&rft.externalDocID=6155745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon