Solving the Assignment Problem Using Continuous-Time and Discrete-Time Improved Dual Networks

The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 23; no. 5; pp. 821 - 827
Main Authors: Hu, Xiaolin, Wang, Jun
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The assignment problem is an archetypal combinatorial optimization problem. In this brief, we present a continuous-time version and a discrete-time version of the improved dual neural network (IDNN) for solving the assignment problem. Compared with most assignment networks in the literature, the two versions of IDNNs are advantageous in circuit implementation due to their simple structures. Both of them are theoretically guaranteed to be globally convergent to a solution of the assignment problem if only the solution is unique.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2012.2187798