The Computational Complexity of Subclasses of Semiperfect Rings

This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semipe...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 12; no. 22; p. 3608
Main Author: Wu, Huishan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2024
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is Σ20-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is Π20-hard within the index set of computable rings. Finally, based on the Π20 definition of local rings, computable semiperfect rings can be described by Σ30 formulas. As a corollary, we find that the index set of computable semiperfect rings can be both Σ20-hard and Π20-hard within the index set of computable rings.
AbstractList This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is Σ[sub.2] [sup.0]-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is Π[sub.2] [sup.0]-hard within the index set of computable rings. Finally, based on the Π[sub.2] [sup.0] definition of local rings, computable semiperfect rings can be described by Σ[sub.3] [sup.0] formulas. As a corollary, we find that the index set of computable semiperfect rings can be both Σ[sub.2] [sup.0]-hard and Π[sub.2] [sup.0]-hard within the index set of computable rings.
This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is Σ20-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is Π20-hard within the index set of computable rings. Finally, based on the Π20 definition of local rings, computable semiperfect rings can be described by Σ30 formulas. As a corollary, we find that the index set of computable semiperfect rings can be both Σ20-hard and Π20-hard within the index set of computable rings.
This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is Σ 20 -hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is Π 20 -hard within the index set of computable rings. Finally, based on the Π 20 definition of local rings, computable semiperfect rings can be described by Σ 30 formulas. As a corollary, we find that the index set of computable semiperfect rings can be both Σ 20 -hard and Π 20 -hard within the index set of computable rings.
Audience Academic
Author Wu, Huishan
Author_xml – sequence: 1
  givenname: Huishan
  orcidid: 0000-0002-0698-7649
  surname: Wu
  fullname: Wu, Huishan
BookMark eNptUU1rGzEQFcWBfN7yAwy91qmkWevjFIxJ24Ch0CRnMauVHJn1ypFkaP59VW8IJkQ6aGb03pNm3jmZDHFwhFwzegOg6fctlmfGOQdB1RdyViM5k_VichSfkqucN7QuzUA1-ozcPj676TJud_uCJcQB-0PWu7-hvE6jnz7sW9tjzi4fMrcNO5e8s2X6JwzrfElOPPbZXb2dF-Tpx93j8tds9fvn_XKxmtmGijLjHVLUGmknvUfuqRBOeiGV4nMvLbWeepgLpr2UjWBCOda0IDVj2FBLNVyQ-1G3i7gxuxS2mF5NxGAOhZjWBlMJtndGdxSbVvCGdW0DlqPwSjnsgHYMWQtV6-uotUvxZe9yMZu4T7X1bIABAJdAWUXdjKg1VtEw-FgS2rq7OgNbZ-9DrS8UUwDz2kYlfBsJNsWck_Pv32TU_LfIHFtU4fwD3IbRg_pO6D8n_QP8N5Sj
CitedBy_id crossref_primary_10_3390_math13030337
Cites_doi 10.1007/978-3-642-59971-2
10.1215/00294527-2019-0036
10.1007/978-3-642-31933-4
10.1007/978-3-031-11367-3
10.1215/00294527-2023-0003
10.1016/j.jalgebra.2008.06.007
10.1016/j.jalgebra.2009.07.039
10.1017/S0004972700031014
10.1007/978-1-4419-8616-0
10.1016/j.jalgebra.2012.09.020
10.1017/bsl.2014.32
10.2178/bsl/1146620059
10.1090/proc/12509
10.1093/acprof:oso/9780199230761.001.0001
10.1090/S0002-9947-2014-06115-1
10.1016/j.jalgebra.2007.02.058
10.1007/978-3-662-02460-7
10.1215/00294527-2021-0017
10.1016/j.apal.2022.103089
10.1007/978-1-4612-4418-9
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12223608
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_9d0a4b6241db43c2a6f88ead30d1a1b3
A818335825
10_3390_math12223608
GeographicLocations Canada
Germany
GeographicLocations_xml – name: Canada
– name: Germany
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-2da0a99a0d7ffa2f066e7f678825f7c0cf0f35619f7746168e14b37911a40c093
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001365526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 18:40:38 EDT 2025
Fri Jul 25 11:57:25 EDT 2025
Tue Nov 04 18:27:59 EST 2025
Sat Nov 29 07:15:27 EST 2025
Tue Nov 18 20:27:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2da0a99a0d7ffa2f066e7f678825f7c0cf0f35619f7746168e14b37911a40c093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0698-7649
OpenAccessLink https://www.proquest.com/docview/3133327301?pq-origsite=%requestingapplication%
PQID 3133327301
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_9d0a4b6241db43c2a6f88ead30d1a1b3
proquest_journals_3133327301
gale_infotracacademiconefile_A818335825
crossref_primary_10_3390_math12223608
crossref_citationtrail_10_3390_math12223608
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Downey (ref_8) 2008; 320
Conidis (ref_14) 2021; 62
ref_21
Melnikov (ref_11) 2014; 20
ref_20
Downey (ref_7) 2014; 366
ref_1
ref_3
ref_2
Conidis (ref_13) 2009; 322
Downey (ref_12) 2007; 314
ref_16
ref_15
Downey (ref_6) 2013; 373
Wu (ref_18) 2022; 173
Lempp (ref_9) 1997; 56
Wu (ref_19) 2023; 64
Riggs (ref_10) 2015; 143
ref_4
Calvert (ref_5) 2006; 12
Wu (ref_17) 2020; 61
References_xml – ident: ref_16
  doi: 10.1007/978-3-642-59971-2
– volume: 61
  start-page: 141
  year: 2020
  ident: ref_17
  article-title: The complexity of radicals and socles of modules
  publication-title: Notre Dame J. Form. Log.
  doi: 10.1215/00294527-2019-0036
– ident: ref_3
  doi: 10.1007/978-3-642-31933-4
– ident: ref_15
  doi: 10.1007/978-3-031-11367-3
– volume: 64
  start-page: 1
  year: 2023
  ident: ref_19
  article-title: The complexity of decomposability of computable rings
  publication-title: Notre Dame J. Form. Log.
  doi: 10.1215/00294527-2023-0003
– ident: ref_4
– volume: 320
  start-page: 2291
  year: 2008
  ident: ref_8
  article-title: The isomorphism problem for torsion-free abelian groups is analytic complete
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2008.06.007
– volume: 322
  start-page: 3670
  year: 2009
  ident: ref_13
  article-title: On the complexity of radicals in noncommutative rings
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2009.07.039
– volume: 56
  start-page: 273
  year: 1997
  ident: ref_9
  article-title: The computational complexity of torsion-freeness of finitely presented groups
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700031014
– ident: ref_20
  doi: 10.1007/978-1-4419-8616-0
– volume: 373
  start-page: 223
  year: 2013
  ident: ref_6
  article-title: Effectively categorical abelian groups
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2012.09.020
– volume: 20
  start-page: 315
  year: 2014
  ident: ref_11
  article-title: Computable abelian groups
  publication-title: Bull. Symb. Log.
  doi: 10.1017/bsl.2014.32
– volume: 12
  start-page: 191
  year: 2006
  ident: ref_5
  article-title: Classification from a computable viewpoint
  publication-title: Bull. Symb. Log.
  doi: 10.2178/bsl/1146620059
– volume: 143
  start-page: 3631
  year: 2015
  ident: ref_10
  article-title: The decomposablity problem for torsion-free abelian groups is analytic-complete
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/12509
– ident: ref_1
  doi: 10.1093/acprof:oso/9780199230761.001.0001
– volume: 366
  start-page: 4243
  year: 2014
  ident: ref_7
  article-title: Computable completely decomposable groups
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2014-06115-1
– volume: 314
  start-page: 872
  year: 2007
  ident: ref_12
  article-title: Ideals in computable rings
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2007.02.058
– ident: ref_2
  doi: 10.1007/978-3-662-02460-7
– volume: 62
  start-page: 353
  year: 2021
  ident: ref_14
  article-title: The complexity of module radicals
  publication-title: Notre Dame J. Form. Log.
  doi: 10.1215/00294527-2021-0017
– volume: 173
  start-page: 103089
  year: 2022
  ident: ref_18
  article-title: The computational complexity of module socles
  publication-title: Ann. Pure Appl. Log.
  doi: 10.1016/j.apal.2022.103089
– ident: ref_21
  doi: 10.1007/978-1-4612-4418-9
SSID ssj0000913849
Score 2.2795596
Snippet This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3608
SubjectTerms Algebra
Complexity
computability theory
computational complexity
local ring
Mathematics
Rings (mathematics)
semiperfect ring
semisimple ring
Sums
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOhB_InTKT0oHqQsadIfOckUhwcdIgq7hTRNcKDbWKvgf-97aTd6GV48lZQUkvea930vJN8j5IJxcGqc2xAeJhRFEofaUR1ykQCYFMBorRdxfUxHo2w8ls-tUl94JqyWB64N15cF1SKHD1mRC24inbgsg-lzWjDNcq_zSVPZSqZ8DJaMZ0LWJ9055PV94H_vDMEwwUqSLQzyUv3rArJHmeEu2WnoYTCoh7VHNux0n2w_rbRVywNyA54N6mIMzUaeb6GwZfUTzFwAscAgJ7alb9nPydwu8NRG8ILb4ofkbXj_evcQNmUQQgNoW4VRoamWUtMidU5HDkiCTR2ADCR3LjXUOOo40CDpgMolLMksEzlPIYppQQ2V_Ih0prOpPSZBnGoNK85oyLIEUKUs13kWGws4b5lhUZdcLw2jTKMRjqUqPhTkCmhG1TZjl1yues9rbYw1_W7Rxqs-qGjtX4CfVeNn9Zefu-QKPaRw3cGQjG6uD8DEUMFKDYB5cLz2G3dJb-lE1SzIUnHIxXmE4ezkP0ZzSrYiYDf1pcQe6VSLL3tGNs13NSkX5_5f_AUn6eJY
  priority: 102
  providerName: Directory of Open Access Journals
Title The Computational Complexity of Subclasses of Semiperfect Rings
URI https://www.proquest.com/docview/3133327301
https://doaj.org/article/9d0a4b6241db43c2a6f88ead30d1a1b3
Volume 12
WOSCitedRecordID wos001365526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_agMN2GINtWgdUOQxxmCzsOJ8n1KIiEKOqYJPYyXIcmyFtbdd0SFz423nPcQsXuHBxlMSHJO_r917s3wP4KiQKNa0sw4NhSZ2lTDuumUwyDCY1IlrrSVy_58NhcXlZjkLBrQnLKhc-0TvqemKoRr4vMZmSMenjwfQfo65R9Hc1tNB4DavEkiD80r2LZY2FOC-LpGzXu0vM7vcRBf4WFBIz6if5KBJ5wv6n3LKPNUfrL33K9_AuoMyo16rFBryy4014e7akaG0-wAEqSNT2dAj1QH9G_Jjz22jiInQphqC1bfyZ_Xs9tTNa_BGdU3X9I_w8Gvw4PGahmwIzGLTnLK4112WpeZ07p2OHWMPmDmMV5oguN9w47iSiqdIhIsxEVliRVDJHZ6gTbngpP8HKeDK2nyFKc63RcI3GZC1BxFVUuipSYxEuWGFE3IFviy-rTKAap44XfxSmHCQH9VgOHdhdzp62FBtPzOuTkJZziBjbX5jMrlSwM1XWXCcV6pmoq0SaWGeuKNBaJK-FFpXswB6JWJH54iMZHXYh4IsREZbqIYCRtHs47cD2QsQq2HWjHuT75fnbW_AmRvjT7lrchpX57L_dgTVzM79uZl1Y7Q-Go_OurwDgeJqzrlddGu8GeH90cjb6dQ801_XZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWqlw6BPUbbclhyIOlYUdO69DtaIPBNplVVUgcXMdx6ZIsLtstq34U_2NnXGSLRd648ApcuJDkhl_840f3wC8ExKNmpSO4cUyVaUJM54bJlWKwaRCRuuCiOsoG4_z09Pi6wr86c7C0LbKDhMDUFdTS3PkuxKTKRmTPw5mV4yqRtHqaldCo3GLobv-jSlb_eHwM9p3O473vxx_OmBtVQFmMXgtWFwZborC8Crz3sQeY67LPGI25ko-s9x67iWyisIjM0pFmjuhSpkhKBjFbRBfQsh_oGSe0bgaZmw5p0Mam7kqmv31UhZ8F1nnD0EhOKX6lTciXygQcFsYCLFt_8l9-ytP4XHLoqO9xu2fwYqbPIf1o6UEbf0CBjgAoqZmRTvfGVqk_7m4jqY-Qsi0lDq4OrTc5fnMzWlzS_SNVg824OROvmATVifTiXsJUZIZg8BkDSajChllXpoyT6xDOuSEFXEP3neW1LaVUqeKHhcaUyqyu75p9x5sL3vPGgmRW_p9JKdY9iHh73BjOj_TLY7oouJGlTiORFUqaWOT-jxHNJC8EkaUsgc75FKa4AlfyZr2lAV-GAl96T0kaJJORyc96HcupVvcqvU_f3r1_8db8Ojg-GikR4fj4WtYi5HqNSc0-7C6mP90b-Ch_bU4r-dvwxCJ4Ptde99f9gJKcg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VW4TgwHfFQoEcqDigaP2Vr0NVlZYVq7arFWqlcjKOY5dKsLtsFlD_Wn8dM4mz7aXceuAUJfEhiZ_fvHHsNwBvucROTUoX48HGqkqT2HhmYqlSDCYVKlrXmLgeZuNxfnpaTNbgstsLQ8sqO05siLqaWZojH0hMpqQgPA58WBYx2R_uzH_GVEGK_rR25TRaiBy4iz-YvtXbo33s6y0hhh-P9z7FocJAbDGQLWNRGWaKwrAq894Ij_HXZR75G_Mmn1lmPfMSFUbhUSWlPM0dV6XMkCCMYrYxYkL6X0dJrkQP1iejo8mX1QwPOW7mqmhX20tZsAFq0G-cAnJK1SyvxcGmXMBNQaGJdMOH__M3egQPgr6OdtsB8RjW3PQJ3D9amdPWT2EHh0bUVrMIM6HNGTmDLi-imY-QTC0lFa5uztyP87lb0LKX6DP9V3gGJ7fyBhvQm86m7jlESWYMUpY1mKYq1Jp5aco8sQ6FkuOWiz6873pV22CyTrU-vmtMtggD-joG-rC1aj1vzUVuaPeBALJqQ5bgzYXZ4kwHhtFFxYwqcYTxqlTSCpP6PEeekKzihpeyD-8IXpqICx_JmrD_Al-MLMD0Lko3Sfumkz5sdvDSgdFqfYWtF_--_QbuIuj04Wh88BLuCdSA7dbNTegtF7_cK7hjfy_P68XrMF4i-Hrb8PsL7AJU8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Computational+Complexity+of+Subclasses+of+Semiperfect+Rings&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wu%2C+Huishan&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=22&rft.spage=3608&rft_id=info:doi/10.3390%2Fmath12223608&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon