The Computational Complexity of Subclasses of Semiperfect Rings

This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semipe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 12; H. 22; S. 3608
1. Verfasser: Wu, Huishan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2024
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is Σ20-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is Π20-hard within the index set of computable rings. Finally, based on the Π20 definition of local rings, computable semiperfect rings can be described by Σ30 formulas. As a corollary, we find that the index set of computable semiperfect rings can be both Σ20-hard and Π20-hard within the index set of computable rings.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math12223608