A modified error backpropagation algorithm for complex-value neural networks

The complex-valued backpropagation algorithm has been widely used in fields of dealing with telecommunications, speech recognition and image processing with Fourier transformation. However, the local minima problem usually occurs in the process of learning. To solve this problem and to speed up the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of neural systems Ročník 15; číslo 6; s. 435
Hlavní autoři: Chen, Xiaoming, Tang, Zheng, Variappan, Catherine, Li, Songsong, Okada, Toshimi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore 01.12.2005
Témata:
ISSN:0129-0657
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The complex-valued backpropagation algorithm has been widely used in fields of dealing with telecommunications, speech recognition and image processing with Fourier transformation. However, the local minima problem usually occurs in the process of learning. To solve this problem and to speed up the learning process, we propose a modified error function by adding a term to the conventional error function, which is corresponding to the hidden layer error. The simulation results show that the proposed algorithm is capable of preventing the learning from sticking into the local minima and of speeding up the learning.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0129-0657
DOI:10.1142/s0129065705000426