A modified error backpropagation algorithm for complex-value neural networks

The complex-valued backpropagation algorithm has been widely used in fields of dealing with telecommunications, speech recognition and image processing with Fourier transformation. However, the local minima problem usually occurs in the process of learning. To solve this problem and to speed up the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of neural systems Jg. 15; H. 6; S. 435
Hauptverfasser: Chen, Xiaoming, Tang, Zheng, Variappan, Catherine, Li, Songsong, Okada, Toshimi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore 01.12.2005
Schlagworte:
ISSN:0129-0657
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complex-valued backpropagation algorithm has been widely used in fields of dealing with telecommunications, speech recognition and image processing with Fourier transformation. However, the local minima problem usually occurs in the process of learning. To solve this problem and to speed up the learning process, we propose a modified error function by adding a term to the conventional error function, which is corresponding to the hidden layer error. The simulation results show that the proposed algorithm is capable of preventing the learning from sticking into the local minima and of speeding up the learning.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0129-0657
DOI:10.1142/s0129065705000426