Extending a brainiac prover to lambda-free higher-order logic
Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start wi...
Uloženo v:
| Vydáno v: | International journal on software tools for technology transfer Ročník 24; číslo 1; s. 67 - 87 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 1433-2779, 1433-2787 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition prover E and gradually enrich it with higher-order features. We explain how to extend the prover’s data structures, algorithms, and heuristics to
λ
-free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone toward full higher-order logic. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1433-2779 1433-2787 |
| DOI: | 10.1007/s10009-021-00639-7 |