Extending a brainiac prover to lambda-free higher-order logic
Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start wi...
Gespeichert in:
| Veröffentlicht in: | International journal on software tools for technology transfer Jg. 24; H. 1; S. 67 - 87 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 1433-2779, 1433-2787 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition prover E and gradually enrich it with higher-order features. We explain how to extend the prover’s data structures, algorithms, and heuristics to
λ
-free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone toward full higher-order logic. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1433-2779 1433-2787 |
| DOI: | 10.1007/s10009-021-00639-7 |