A Big-Data-Analytics Framework for Supporting Logistics Problems in Smart-City Environments

Containers delivery management is a problem widely studied. Typically, it concerns the container movement on a truck from ships to factories or wholesalers and vice-versa. As there is an increasing interest in shipping goods by container, and that delivery points can be far from railways in various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 159; S. 2589 - 2597
Hauptverfasser: Cuzzocrea, Alfredo, Nolich, Massimiliano, Ukovich, Walter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2019
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Containers delivery management is a problem widely studied. Typically, it concerns the container movement on a truck from ships to factories or wholesalers and vice-versa. As there is an increasing interest in shipping goods by container, and that delivery points can be far from railways in various areas of interest, it is important to evaluate techniques for managing container transport that involves several days. The time horizon considered is a whole working week, rather than a single day as in classical drayage problems. Truck fleet management companies are typically interested in such optimization, as they plan how to match their truck to the incoming transportation order. This planning is a relevant both for strategical consideration and operational ones, as prices of transportation orders strictly depends on how they are fulfilled. It is worth noting that, from a mathematical point of view, this is an NP-Hard problem. In this paper, a Decision Support System for managing the tasks to be assigned to each truck of a fleet is presented, in order to optimize the number of transportation order fulfilled in a week. The proposed system implements a hybrid optimization algorithm capable of improving the performances typically presented in literature. The proposed heuristic implements an hybrid genetic algorithm that generate chains of consecutive orders that can be executed by a truck. Moreover, it uses an assignment algorithm based to evaluate the optimal solution on the selected order chains.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2019.09.257