A Big-Data-Analytics Framework for Supporting Logistics Problems in Smart-City Environments

Containers delivery management is a problem widely studied. Typically, it concerns the container movement on a truck from ships to factories or wholesalers and vice-versa. As there is an increasing interest in shipping goods by container, and that delivery points can be far from railways in various...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 159; s. 2589 - 2597
Hlavní autoři: Cuzzocrea, Alfredo, Nolich, Massimiliano, Ukovich, Walter
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2019
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Containers delivery management is a problem widely studied. Typically, it concerns the container movement on a truck from ships to factories or wholesalers and vice-versa. As there is an increasing interest in shipping goods by container, and that delivery points can be far from railways in various areas of interest, it is important to evaluate techniques for managing container transport that involves several days. The time horizon considered is a whole working week, rather than a single day as in classical drayage problems. Truck fleet management companies are typically interested in such optimization, as they plan how to match their truck to the incoming transportation order. This planning is a relevant both for strategical consideration and operational ones, as prices of transportation orders strictly depends on how they are fulfilled. It is worth noting that, from a mathematical point of view, this is an NP-Hard problem. In this paper, a Decision Support System for managing the tasks to be assigned to each truck of a fleet is presented, in order to optimize the number of transportation order fulfilled in a week. The proposed system implements a hybrid optimization algorithm capable of improving the performances typically presented in literature. The proposed heuristic implements an hybrid genetic algorithm that generate chains of consecutive orders that can be executed by a truck. Moreover, it uses an assignment algorithm based to evaluate the optimal solution on the selected order chains.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2019.09.257