On ideal convergence in probabilistic normed spaces
An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence , Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I -convergence, I *-convergence, I...
Uložené v:
| Vydané v: | Mathematica Slovaca Ročník 62; číslo 1; s. 49 - 62 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
SP Versita
01.02.2012
Versita |
| Predmet: | |
| ISSN: | 0139-9918, 1337-2211 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | An interesting generalization of statistical convergence is
I
-convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.:
I-Convergence
, Real Anal. Exchange
26
(2000–2001), 669–686]. In this paper, we define and study the concept of
I
-convergence,
I
*-convergence,
I
-limit points and
I
-cluster points in probabilistic normed space. We discuss the relationship between
I
-convergence and
I
*-convergence, i.e. we show that
I
*-convergence implies the
I
-convergence in probabilistic normed space. Furthermore, we have also demonstrated through an example that, in general,
I
-convergence does not imply
I
*-convergence in probabilistic normed space. |
|---|---|
| ISSN: | 0139-9918 1337-2211 |
| DOI: | 10.2478/s12175-011-0071-9 |