On ideal convergence in probabilistic normed spaces

An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence , Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I -convergence, I *-convergence, I...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematica Slovaca Ročník 62; číslo 1; s. 49 - 62
Hlavní autoři: Mursaleen, M., Mohiuddine, S. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg SP Versita 01.02.2012
Versita
Témata:
ISSN:0139-9918, 1337-2211
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence , Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I -convergence, I *-convergence, I -limit points and I -cluster points in probabilistic normed space. We discuss the relationship between I -convergence and I *-convergence, i.e. we show that I *-convergence implies the I -convergence in probabilistic normed space. Furthermore, we have also demonstrated through an example that, in general, I -convergence does not imply I *-convergence in probabilistic normed space.
ISSN:0139-9918
1337-2211
DOI:10.2478/s12175-011-0071-9