Myoelectric Control for Upper Limb Prostheses
State-of-the-art high-end prostheses are electro-mechanically able to provide a great variety of movements. Nevertheless, in order to functionally replace a human limb, it is essential that each movement is properly controlled. This is the goal of prosthesis control, which has become a growing resea...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 8; číslo 11; s. 1244 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2019
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | State-of-the-art high-end prostheses are electro-mechanically able to provide a great variety of movements. Nevertheless, in order to functionally replace a human limb, it is essential that each movement is properly controlled. This is the goal of prosthesis control, which has become a growing research field in the last decades, with the ultimate goal of reproducing biological limb control. Therefore, exploration and development of prosthesis control are crucial to improve many aspects of an amputee’s life. Nowadays, a large divergence between academia and industry has become evident in commercial systems. Although several studies propose more natural control systems with promising results, basic one degree of freedom (DoF), a control switching system is the most widely used option in industry because of simplicity, robustness and inertia. A few classification controlled prostheses have emerged in the last years but they are still a low percentage of the used ones. One of the factors that generate this situation is the lack of robustness of more advanced control algorithms in daily life activities outside of laboratory conditions. Because of this, research has shifted towards more functional prosthesis control. This work reviews the most recent literature in upper limb prosthetic control. It covers commonly used variants of possible biological inputs, its processing and translation to actual control, mostly focusing on electromyograms as well as the problems it will have to overcome in near future. |
|---|---|
| AbstractList | State-of-the-art high-end prostheses are electro-mechanically able to provide a great variety of movements. Nevertheless, in order to functionally replace a human limb, it is essential that each movement is properly controlled. This is the goal of prosthesis control, which has become a growing research field in the last decades, with the ultimate goal of reproducing biological limb control. Therefore, exploration and development of prosthesis control are crucial to improve many aspects of an amputee’s life. Nowadays, a large divergence between academia and industry has become evident in commercial systems. Although several studies propose more natural control systems with promising results, basic one degree of freedom (DoF), a control switching system is the most widely used option in industry because of simplicity, robustness and inertia. A few classification controlled prostheses have emerged in the last years but they are still a low percentage of the used ones. One of the factors that generate this situation is the lack of robustness of more advanced control algorithms in daily life activities outside of laboratory conditions. Because of this, research has shifted towards more functional prosthesis control. This work reviews the most recent literature in upper limb prosthetic control. It covers commonly used variants of possible biological inputs, its processing and translation to actual control, mostly focusing on electromyograms as well as the problems it will have to overcome in near future. |
| Author | Pardo, Luis A. Igual, Jorge Igual, Carles Hahne, Janne M. |
| Author_xml | – sequence: 1 givenname: Carles orcidid: 0000-0002-7416-5313 surname: Igual fullname: Igual, Carles – sequence: 2 givenname: Luis A. surname: Pardo fullname: Pardo, Luis A. – sequence: 3 givenname: Janne M. surname: Hahne fullname: Hahne, Janne M. – sequence: 4 givenname: Jorge orcidid: 0000-0003-3408-4014 surname: Igual fullname: Igual, Jorge |
| BookMark | eNp9kD9PwzAQxS1UJErpF2CKxBzwv6T2iCKgSEEw0NmynbNwlcbBTod-e1yVAYHELXfD-727e5doNoQBELom-JYxie-gBzvFMHibBCGEcn6G5hSvZCmppLMf8wVaprTFuSRhguE5Kl8O4cR7WzRhyD594UIsNuMIsWj9zhRvMaTpAxKkK3TudJ9g-d0XaPP48N6sy_b16bm5b0vLRDWV2nEtOauYwxgMYTVISzHUnWRGG40J6bSRznDJDYUKU1dnuTMgeNUZvGILdHPyHWP43EOa1Dbs45BXKlpxwUld11VWiZPK5gNTBKesn_Tkj19o3yuC1TEf9TefjNJf6Bj9TsfDf9AXIihuXg |
| CitedBy_id | crossref_primary_10_1007_s42235_022_00246_5 crossref_primary_10_1088_1741_2552_abbed0 crossref_primary_10_31083_j_jin2002028 crossref_primary_10_1007_s00521_023_08869_3 crossref_primary_10_1016_j_eswa_2024_124345 crossref_primary_10_1146_annurev_control_070122_102501 crossref_primary_10_1109_TNSRE_2024_3490796 crossref_primary_10_3390_robotics12060152 crossref_primary_10_1016_j_conengprac_2023_105774 crossref_primary_10_3390_s21206863 crossref_primary_10_3390_app12199700 crossref_primary_10_1007_s00542_020_04939_x crossref_primary_10_1016_j_mechatronics_2024_103161 crossref_primary_10_1016_j_bspc_2023_104602 crossref_primary_10_1088_1741_2552_ad0754 crossref_primary_10_1016_j_bspc_2020_102292 crossref_primary_10_1080_07853890_2023_2166979 crossref_primary_10_3390_biomimetics9120784 crossref_primary_10_3390_biomimetics8010029 crossref_primary_10_1097_CORR_0000000000002213 crossref_primary_10_1109_TBME_2022_3194104 crossref_primary_10_3390_app11104464 crossref_primary_10_3390_biomimetics10040214 crossref_primary_10_1109_JBHI_2023_3238966 crossref_primary_10_3390_bioengineering10020234 crossref_primary_10_1098_rsta_2021_0005 crossref_primary_10_1109_JBHI_2023_3287979 crossref_primary_10_3389_fnins_2025_1568212 crossref_primary_10_1007_s13246_024_01454_5 crossref_primary_10_1016_j_bspc_2021_103036 crossref_primary_10_3390_app10082892 crossref_primary_10_1007_s40435_023_01130_8 crossref_primary_10_1109_TNSRE_2022_3162421 crossref_primary_10_3390_act11030065 |
| Cites_doi | 10.1109/TBME.2010.2068298 10.1109/ICRC.2016.7738683 10.1109/TNSRE.2011.2178039 10.1109/TBME.2017.2719400 10.1007/s11999-014-3528-7 10.1097/SLA.0000000000003088 10.1016/j.eswa.2011.06.043 10.1016/j.rehab.2018.05.1090 10.1109/MLSP.2012.6349712 10.1097/PHM.0b013e3181587f6c 10.1038/nature06996 10.1007/s10439-011-0265-x 10.1109/TBME.2003.813539 10.1191/0269215504cr716oa 10.1109/TNSRE.2007.910282 10.1109/IEMBS.2007.4353509 10.1016/j.bspc.2007.07.009 10.1109/TNSRE.2002.806831 10.1016/S1050-6411(01)00033-5 10.1186/1743-0003-8-25 10.1186/s12984-018-0422-7 10.1038/s41598-017-04255-x 10.1016/j.bspc.2007.11.005 10.1682/JRRD.2010.08.0161 10.1007/s11042-018-6293-x 10.1109/TBME.2012.2232293 10.1109/TBME.2016.2641584 10.1007/s00422-008-0278-1 10.1371/journal.pone.0186318 10.1109/TNSRE.2015.2454240 10.1186/s12984-018-0361-3 10.1088/1741-2560/12/4/046005 10.1109/IEMBS.2010.5627638 10.1016/j.future.2017.04.036 10.1109/TBME.2011.2113182 10.1109/TNSRE.2014.2323576 10.1088/1741-2552/aa87cf 10.1371/journal.pone.0008973 10.3109/03093640409167756 10.1186/s12984-017-0256-8 10.1109/TSMCC.2012.2226444 10.1109/TNSRE.2014.2305520 10.1186/s12984-019-0545-5 10.1186/s12984-016-0212-z 10.1109/TNSRE.2015.2492619 10.1038/s41598-017-14386-w 10.1109/JBHI.2013.2249590 10.1109/TSP.2013.6614027 10.1371/journal.pbio.1000153 10.1109/TNSRE.2016.2554884 10.1016/j.bspc.2014.03.006 10.1109/JTEHM.2016.2616123 10.1109/TNSRE.2011.2163529 10.1109/EMBC.2014.6943678 10.1053/hanthe.2002.v15.01562 10.1109/TNSRE.2013.2279737 10.3390/s17061370 10.3389/fnbot.2017.00007 10.1109/TNSRE.2012.2196711 10.4108/icst.mobihealth.2014.257440 10.1038/nature04970 10.1016/j.neucom.2017.11.072 10.1109/TNSRE.2009.2023282 10.1109/TNSRE.2005.847357 10.1103/PhysRevLett.103.214101 10.3390/s18051615 10.1109/TNSRE.2019.2894464 10.1126/scirobotics.aat3630 10.1109/TBME.2011.2159216 10.1109/EMBC.2013.6610327 10.1682/JRRD.2010.09.0177 10.1109/IEMBS.2011.6090468 10.1016/j.apmr.2008.05.016 10.3389/fnins.2016.00209 10.1001/jama.2009.116 10.1109/TBME.2015.2469741 10.1016/j.clinph.2008.06.001 10.1109/TNSRE.2015.2413393 10.1109/TBME.2005.856295 10.1126/scitranslmed.aao6990 10.1016/j.jelekin.2006.08.006 10.1016/j.apmr.2007.11.005 10.3390/s19092203 10.1109/TBME.2003.818469 10.1109/TSMC.1975.5408479 10.1007/s11517-007-0168-z 10.1109/TBME.2006.883695 10.1109/TNSRE.2013.2294685 10.1109/MSP.2014.2334952 10.1007/978-4-431-55816-3_10 10.1109/TNSRE.2007.891391 10.1109/10.52324 10.1109/ICORR.2011.5975338 10.1109/10.204774 10.1002/jso.25256 10.1186/1743-0003-10-44 10.1088/1741-2552/aae26b 10.3389/conf.fneng.2014.11.00004 10.1109/TBME.2004.836492 10.1109/TNSRE.2016.2562180 10.1109/TBME.2008.2008171 10.1109/TBME.2007.914672 10.1016/j.pmrj.2015.06.438 10.1088/1741-2552/ab0e2e 10.1109/ROBIO.2006.340145 10.1109/TNSRE.2015.2417775 10.1152/japplphysiol.01070.2003 10.1109/TBME.2008.2007967 10.1080/03093640600994581 10.1152/jn.90614.2008 10.1109/TNSRE.2014.2305111 10.1088/1741-2560/9/2/026013 10.1109/EMBC.2012.6346186 10.1109/TNSRE.2015.2401134 10.1186/s12984-018-0371-1 10.1109/86.481972 10.1088/1741-2552/aa620b 10.1016/j.eswa.2013.02.023 10.1109/TBME.2012.2188799 10.1109/TBME.2013.2281595 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics8111244 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics8111244 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c385t-af4a94353f00eb136e9c20e6d93baba011dab9fb494b2e502f6943fbe845db073 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502269500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 05:40:37 EST 2025 Tue Nov 18 21:03:49 EST 2025 Sat Nov 29 07:09:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-af4a94353f00eb136e9c20e6d93baba011dab9fb494b2e502f6943fbe845db073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7416-5313 0000-0003-3408-4014 |
| OpenAccessLink | https://www.proquest.com/docview/2548416665?pq-origsite=%requestingapplication% |
| PQID | 2548416665 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2548416665 crossref_citationtrail_10_3390_electronics8111244 crossref_primary_10_3390_electronics8111244 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Nishikawa (ref_111) 2001; 84 Hargrove (ref_23) 2017; 7 ref_130 ref_98 ref_97 Clancy (ref_53) 2002; 12 Wheeler (ref_70) 1995; 3 Jiang (ref_12) 2012; 29 Li (ref_57) 2011; 39 Wubben (ref_131) 2014; 31 ref_17 Chan (ref_69) 2004; 52 Zhu (ref_110) 2017; 25 Phinyomark (ref_61) 2013; 40 ref_125 ref_128 ref_129 Farrell (ref_59) 2007; 15 Markovic (ref_124) 2018; 15 Huang (ref_39) 2008; 16 Karlik (ref_71) 2003; 50 ref_21 Farina (ref_83) 2014; 22 ref_20 Jiang (ref_92) 2009; 56 Markovic (ref_108) 2018; 15 Sartori (ref_37) 2018; 15 Radhakrishnan (ref_109) 2008; 100 Scheme (ref_6) 2011; 48 Betthauser (ref_112) 2018; 65 Ison (ref_13) 2016; 24 Fougner (ref_18) 2011; 19 ref_72 Herberts (ref_81) 1981; 5 Nielsen (ref_60) 2011; 58 Vujaklija (ref_11) 2016; 8 Vidovic (ref_85) 2016; 24 Vidaurre (ref_113) 2017; 14 Fang (ref_104) 2017; 64 ref_79 ref_78 Oskoei (ref_48) 2007; 2 ref_77 Alkan (ref_67) 2012; 39 Hahne (ref_80) 2012; 59 Sensinger (ref_50) 2009; 17 Igual (ref_96) 2019; 27 Chen (ref_51) 2013; 10 Ameri (ref_93) 2014; 22 Davidson (ref_5) 2002; 15 Cordella (ref_132) 2016; 10 Kuiken (ref_38) 2009; 301 He (ref_84) 2015; 12 Farahani (ref_127) 2018; 78 Amsuess (ref_122) 2016; 24 Silva (ref_126) 2015; 7 Vujaklija (ref_22) 2017; 11 Chu (ref_55) 2006; 53 Mioton (ref_44) 2018; 118 ref_88 Ameri (ref_95) 2014; 13 Meinecke (ref_86) 2009; 103 Ameri (ref_94) 2014; 61 Graupe (ref_62) 1975; 1 Smith (ref_100) 2016; 63 Marquardt (ref_32) 1965; 47 Couraud (ref_114) 2018; 15 Biddiss (ref_10) 2007; 31 ref_58 Velliste (ref_25) 2008; 453 Fougner (ref_35) 2012; 20 Thomas (ref_106) 2019; 16 Hahne (ref_47) 2014; 22 ref_52 Datta (ref_4) 2004; 18 Hargrove (ref_90) 2008; 3 Farina (ref_56) 2004; 96 Hochberg (ref_24) 2006; 442 Spanias (ref_64) 2015; 24 Young (ref_19) 2011; 58 Bouvier (ref_107) 2018; 61 Castellini (ref_66) 2009; 100 Dillingham (ref_1) 2002; 95 Muceli (ref_102) 2012; 20 Resnik (ref_36) 2018; 15 Lorrain (ref_82) 2011; 8 Ganguly (ref_28) 2009; 7 Kuiken (ref_42) 2004; 28 Hargrove (ref_74) 2008; 56 Braun (ref_120) 2010; 5 Engeberg (ref_101) 2008; 55 Schulz (ref_119) 2018; 298 ref_115 Biddiss (ref_3) 2007; 86 MacKenzie (ref_2) 2008; 89 ref_117 Parker (ref_34) 2006; 16 Hudgins (ref_73) 1993; 40 ref_116 Ameri (ref_15) 2019; 16 Englehart (ref_33) 2003; 50 ref_118 Kelly (ref_63) 1990; 37 Ajiboye (ref_54) 2005; 13 Nuttin (ref_29) 2008; 119 Miller (ref_41) 2008; 89 Bugmann (ref_68) 2013; 17 Sherman (ref_30) 1964; 91 Dumanian (ref_43) 2019; 270 Young (ref_45) 2013; 60 Scheme (ref_16) 2011; 58 Frisoli (ref_27) 2012; 42 Roy (ref_89) 2007; 45 Samek (ref_87) 2012; 9 Powell (ref_105) 2014; 22 Li (ref_75) 2017; 14 ref_103 Peerdeman (ref_49) 2011; 48 Hahne (ref_14) 2015; 23 Huang (ref_65) 2005; 52 Childress (ref_31) 1985; 9 Wheaton (ref_121) 2017; 14 ref_46 Souza (ref_40) 2014; 472 McMullen (ref_26) 2014; 22 Hahne (ref_91) 2017; 7 ref_9 Peleg (ref_76) 2002; 10 ref_8 Kuiken (ref_123) 2016; 4 ref_7 Strazzulla (ref_99) 2017; 25 |
| References_xml | – volume: 58 start-page: 681 year: 2011 ident: ref_60 article-title: Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068298 – ident: ref_72 doi: 10.1109/ICRC.2016.7738683 – volume: 20 start-page: 371 year: 2012 ident: ref_102 article-title: Simultaneous and Proportional Estimation of HandKinematics From EMG During Mirrored Movements at MultipleDegrees-of-Freedom publication-title: Neural Syst. Rehabil. Eng. IEEE Trans. doi: 10.1109/TNSRE.2011.2178039 – volume: 65 start-page: 770 year: 2018 ident: ref_112 article-title: Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2719400 – volume: 472 start-page: 2984 year: 2014 ident: ref_40 article-title: Targeted Muscle Reinnervation: A Novel Approach to Postamputation Neuroma Pain publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-014-3528-7 – volume: 270 start-page: 238 year: 2019 ident: ref_43 article-title: Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: A randomized clinical trial publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000003088 – volume: 39 start-page: 44 year: 2012 ident: ref_67 article-title: Identification of EMG signals using discriminant analysis and SVM classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.043 – volume: 61 start-page: e467 year: 2018 ident: ref_107 article-title: Sensory and motor parameter estimation for elbow myoelectric control with vibrotactile feedback publication-title: Ann. Phys. Rehabil. Med. doi: 10.1016/j.rehab.2018.05.1090 – ident: ref_46 doi: 10.1109/MLSP.2012.6349712 – volume: 86 start-page: 977 year: 2007 ident: ref_3 article-title: Upper-limb prosthetics: Critical factors in device abandonment publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/PHM.0b013e3181587f6c – volume: 453 start-page: 1098 year: 2008 ident: ref_25 article-title: Cortical control of a prosthetic arm for self-feeding publication-title: Nature doi: 10.1038/nature06996 – volume: 39 start-page: 1779 year: 2011 ident: ref_57 article-title: Conditioning and Sampling Issues of EMG Signals in Motion Recognition of Multifunctional Myoelectric Prostheses publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0265-x – volume: 50 start-page: 848 year: 2003 ident: ref_33 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.813539 – volume: 18 start-page: 172 year: 2004 ident: ref_4 article-title: Functional outcome of patients with proximal upper limb deficiency–acquired and congenital publication-title: Clin. Rehabil. doi: 10.1191/0269215504cr716oa – volume: 16 start-page: 37 year: 2008 ident: ref_39 article-title: An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.910282 – ident: ref_79 doi: 10.1109/IEMBS.2007.4353509 – volume: 2 start-page: 275 year: 2007 ident: ref_48 article-title: Myoelectric control systems—A survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.07.009 – volume: 10 start-page: 290 year: 2002 ident: ref_76 article-title: Classification of finger activation for use in a robotic prosthesis arm publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2002.806831 – volume: 12 start-page: 1 year: 2002 ident: ref_53 article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(01)00033-5 – volume: 8 start-page: 25 year: 2011 ident: ref_82 article-title: Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-8-25 – volume: 15 start-page: 81 year: 2018 ident: ref_108 article-title: Myocontrol is closed-loop control: Incidental feedback is sufficient for scaling the prosthesis force in routine grasping publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0422-7 – volume: 7 start-page: 4437 year: 2017 ident: ref_91 article-title: User adaptation in Myoelectric Man-Machine Interfaces publication-title: Sci. Rep. doi: 10.1038/s41598-017-04255-x – volume: 3 start-page: 175 year: 2008 ident: ref_90 article-title: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.11.005 – volume: 48 start-page: 719 year: 2011 ident: ref_49 article-title: Myoelectric forearm prostheses: State of the art from a user-centered perspective publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2010.08.0161 – ident: ref_130 doi: 10.1007/s11042-018-6293-x – volume: 60 start-page: 1250 year: 2013 ident: ref_45 article-title: Classification of Simultaneous Movements using Surface EMG Pattern Recognition publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2232293 – volume: 64 start-page: 2575 year: 2017 ident: ref_104 article-title: Interface Prostheses With Classifier-Feedback-Based User Training publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2641584 – volume: 100 start-page: 35 year: 2009 ident: ref_66 article-title: Surface EMG in advanced hand prosthetics publication-title: Biol. Cybern. doi: 10.1007/s00422-008-0278-1 – ident: ref_97 doi: 10.1371/journal.pone.0186318 – volume: 24 start-page: 744 year: 2016 ident: ref_122 article-title: Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2454240 – volume: 15 start-page: 23 year: 2018 ident: ref_36 article-title: Evaluation of EMG pattern recognition for upper limb prosthesis control: A case study in comparison with direct myoelectric control publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0361-3 – volume: 12 start-page: 046005 year: 2015 ident: ref_84 article-title: User adaptation in long-term, open-loop myoelectric training: Implications for EMG pattern recognition in prosthesis control publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046005 – ident: ref_7 doi: 10.1109/IEMBS.2010.5627638 – volume: 78 start-page: 659 year: 2018 ident: ref_127 article-title: Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.04.036 – volume: 29 start-page: 150 year: 2012 ident: ref_12 article-title: Myoelectric Control of Artificial Limbs—Is There a Need to Change Focus? publication-title: IEEE Signal Process. Mag. – volume: 58 start-page: 1698 year: 2011 ident: ref_16 article-title: Selective classification for improved robustness of myoelectric control under nonideal conditions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2113182 – volume: 22 start-page: 1198 year: 2014 ident: ref_93 article-title: Support Vector Regression for Improved Real-Time, Simultaneous Myoelectric Control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2323576 – volume: 8 start-page: 31 year: 2016 ident: ref_11 article-title: New developments in prosthetic arm systems publication-title: Orthop. Res. Rev. – volume: 15 start-page: 026006 year: 2018 ident: ref_114 article-title: Model and experiments to optimize co-adaptation in a simplified myoelectric control system publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa87cf – volume: 5 start-page: 1 year: 2010 ident: ref_120 article-title: Structure Learning in a Sensorimotor Association Task publication-title: PLoS ONE doi: 10.1371/journal.pone.0008973 – volume: 28 start-page: 245 year: 2004 ident: ref_42 article-title: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee publication-title: Prosthet. Orthot. Int. doi: 10.3109/03093640409167756 – ident: ref_115 – volume: 14 start-page: 41 year: 2017 ident: ref_121 article-title: Neurorehabilitation in upper limb amputation: Understanding how neurophysiological changes can affect functional rehabilitation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0256-8 – volume: 42 start-page: 1169 year: 2012 ident: ref_27 article-title: A New Gaze-BCI-Driven Control of an Upper Limb Exoskeleton for Rehabilitation in Real-World Tasks publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2012.2226444 – volume: 22 start-page: 269 year: 2014 ident: ref_47 article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305520 – volume: 16 start-page: 70 year: 2019 ident: ref_106 article-title: Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0545-5 – volume: 14 start-page: 2 year: 2017 ident: ref_75 article-title: A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-016-0212-z – volume: 24 start-page: 961 year: 2016 ident: ref_85 article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2492619 – volume: 7 start-page: 2045 year: 2017 ident: ref_23 article-title: Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial publication-title: Sci. Rep. doi: 10.1038/s41598-017-14386-w – volume: 9 start-page: 2 year: 1985 ident: ref_31 article-title: Historical aspects of powered limb prostheses publication-title: Clin. Prosthet. Orthot. – volume: 17 start-page: 608 year: 2013 ident: ref_68 article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography publication-title: IEEE J. Biomed. Health Informat. doi: 10.1109/JBHI.2013.2249590 – ident: ref_8 doi: 10.1109/TSP.2013.6614027 – volume: 7 start-page: 1 year: 2009 ident: ref_28 article-title: Emergence of a Stable Cortical Map for Neuroprosthetic Control publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000153 – volume: 25 start-page: 227 year: 2017 ident: ref_99 article-title: Online Bimanual Manipulation Using Surface Electromyography and Incremental Learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2554884 – volume: 13 start-page: 8 year: 2014 ident: ref_95 article-title: Real-time, simultaneous myoelectric control using visual target-based training paradigm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.03.006 – volume: 4 start-page: 1 year: 2016 ident: ref_123 article-title: A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2016.2616123 – volume: 19 start-page: 644 year: 2011 ident: ref_18 article-title: Resolving the Limb Position Effect in Myoelectric Pattern Recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2163529 – ident: ref_88 doi: 10.1109/EMBC.2014.6943678 – volume: 15 start-page: 62 year: 2002 ident: ref_5 article-title: A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities publication-title: J. Hand Ther. doi: 10.1053/hanthe.2002.v15.01562 – volume: 22 start-page: 522 year: 2014 ident: ref_105 article-title: User training for pattern recognition-based myoelectric prostheses: Improving phantom limb movement consistency and distinguishability publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2279737 – ident: ref_98 doi: 10.3390/s17061370 – volume: 91 start-page: 1268 year: 1964 ident: ref_30 article-title: A Russian bioelectric-controlled prosthesis publication-title: Can. Med. Assoc. J. – volume: 11 start-page: 7 year: 2017 ident: ref_22 article-title: Translating Research on Myoelectric Control into Clinics—Are the Performance Assessment Methods Adequate? publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2017.00007 – volume: 20 start-page: 663 year: 2012 ident: ref_35 article-title: Control of upper limb prostheses: Terminology and proportional myoelectric control—A review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2196711 – ident: ref_128 doi: 10.4108/icst.mobihealth.2014.257440 – volume: 442 start-page: 164 year: 2006 ident: ref_24 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 298 start-page: 122 year: 2018 ident: ref_119 article-title: Expectation maximization transfer learning and its application for bionic hand prostheses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.072 – volume: 17 start-page: 270 year: 2009 ident: ref_50 article-title: Adaptive Pattern Recognition of Myoelectric Signals: Exploration of Conceptual Framework and Practical Algorithms publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2023282 – volume: 13 start-page: 280 year: 2005 ident: ref_54 article-title: A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.847357 – volume: 103 start-page: 214101 year: 2009 ident: ref_86 article-title: Finding stationary subspaces in multivariate time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.214101 – ident: ref_58 doi: 10.3390/s18051615 – volume: 27 start-page: 314 year: 2019 ident: ref_96 article-title: Adaptive Auto-Regressive Proportional Myoelectric Control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2894464 – volume: 84 start-page: 35 year: 2001 ident: ref_111 article-title: On-line learning method for EMG prosthetic hand control publication-title: Electron. Commun. Jpn. (Part III Fundam. Electron. Sci.) – ident: ref_118 doi: 10.1126/scirobotics.aat3630 – volume: 58 start-page: 2537 year: 2011 ident: ref_19 article-title: The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2159216 – ident: ref_21 doi: 10.1109/EMBC.2013.6610327 – ident: ref_78 – volume: 48 start-page: 643 year: 2011 ident: ref_6 article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2010.09.0177 – ident: ref_20 doi: 10.1109/IEMBS.2011.6090468 – volume: 89 start-page: 2057 year: 2008 ident: ref_41 article-title: Control of a Six Degree of Freedom Prosthetic Arm After Targeted Muscle Reinnervation Surgery publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2008.05.016 – volume: 10 start-page: 209 year: 2016 ident: ref_132 article-title: Literature Review on Needs of Upper Limb Prosthesis Users publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00209 – volume: 301 start-page: 619 year: 2009 ident: ref_38 article-title: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms publication-title: JAMA doi: 10.1001/jama.2009.116 – volume: 63 start-page: 737 year: 2016 ident: ref_100 article-title: Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2469741 – volume: 119 start-page: 2159 year: 2008 ident: ref_29 article-title: A brain-actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous control of robots publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.06.001 – volume: 24 start-page: 226 year: 2015 ident: ref_64 article-title: Detection of and compensation for EMG disturbances for powered lower limb prosthesis control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2413393 – volume: 52 start-page: 1801 year: 2005 ident: ref_65 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856295 – ident: ref_9 doi: 10.1126/scitranslmed.aao6990 – volume: 16 start-page: 541 year: 2006 ident: ref_34 article-title: Myoelectric signal processing for control of powered limb prostheses publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2006.08.006 – volume: 89 start-page: 422 year: 2008 ident: ref_2 article-title: Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2007.11.005 – ident: ref_117 doi: 10.3390/s19092203 – volume: 50 start-page: 1255 year: 2003 ident: ref_71 article-title: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.818469 – volume: 1 start-page: 252 year: 1975 ident: ref_62 article-title: Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes publication-title: IEEE Trans. Syst. Man, Cybern. doi: 10.1109/TSMC.1975.5408479 – volume: 45 start-page: 447 year: 2007 ident: ref_89 article-title: Electro-mechanical stability of surface EMG sensors publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-007-0168-z – volume: 53 start-page: 2232 year: 2006 ident: ref_55 article-title: A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.883695 – volume: 22 start-page: 784 year: 2014 ident: ref_26 article-title: Demonstration of a Semi-Autonomous Hybrid Brain–Machine Interface Using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2294685 – volume: 31 start-page: 35 year: 2014 ident: ref_131 article-title: Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2334952 – ident: ref_129 doi: 10.1007/978-4-431-55816-3_10 – volume: 95 start-page: 875 year: 2002 ident: ref_1 article-title: Limb amputation and limb deficiency: Epidemiology and recent trends in the United States publication-title: South. Med. J. – volume: 47 start-page: 425 year: 1965 ident: ref_32 article-title: The Heidelberg pneumatic arm prosthesis publication-title: J. Bone Jt. – volume: 15 start-page: 111 year: 2007 ident: ref_59 article-title: The Optimal Controller Delay for Myoelectric Prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.891391 – volume: 37 start-page: 221 year: 1990 ident: ref_63 article-title: The application of neural networks to myoelectric signal analysis: A preliminary study publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.52324 – ident: ref_52 doi: 10.1109/ICORR.2011.5975338 – volume: 5 start-page: 15 year: 1981 ident: ref_81 article-title: Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals publication-title: Int. Orthop. – volume: 40 start-page: 82 year: 1993 ident: ref_73 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 118 start-page: 807 year: 2018 ident: ref_44 article-title: Targeted muscle reinnervation and prosthetic rehabilitation after limb loss publication-title: J. Surg. Oncol. doi: 10.1002/jso.25256 – volume: 10 start-page: 44 year: 2013 ident: ref_51 article-title: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-10-44 – volume: 15 start-page: 066026 year: 2018 ident: ref_37 article-title: Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aae26b – ident: ref_17 doi: 10.3389/conf.fneng.2014.11.00004 – volume: 52 start-page: 121 year: 2004 ident: ref_69 article-title: Continuous myoelectric control for powered prostheses using hidden Markov models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.836492 – volume: 25 start-page: 254 year: 2017 ident: ref_110 article-title: Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2562180 – volume: 56 start-page: 1407 year: 2008 ident: ref_74 article-title: Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2008171 – volume: 55 start-page: 1572 year: 2008 ident: ref_101 article-title: Hybrid force–velocity sliding mode control of a prosthetic hand publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.914672 – volume: 7 start-page: 1312 year: 2015 ident: ref_126 article-title: Three-dimensional (3-D) printing: A cost-effective solution for improving global accessibility to prostheses publication-title: PM&R doi: 10.1016/j.pmrj.2015.06.438 – volume: 16 start-page: 036015 year: 2019 ident: ref_15 article-title: Regression convolutional neural network for improved simultaneous EMG control publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0e2e – ident: ref_77 doi: 10.1109/ROBIO.2006.340145 – volume: 24 start-page: 424 year: 2016 ident: ref_13 article-title: High-Density Electromyograph and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2417775 – volume: 96 start-page: 1486 year: 2004 ident: ref_56 article-title: The extraction of neural strategies from the surface EMG publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01070.2003 – ident: ref_125 – volume: 56 start-page: 1070 year: 2009 ident: ref_92 article-title: Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal publication-title: IEEE Trans. Bio-Med. Eng. doi: 10.1109/TBME.2008.2007967 – volume: 31 start-page: 236 year: 2007 ident: ref_10 article-title: Upper limb prosthesis use and abandonment: A survey of the last 25 years publication-title: Prosthet. Orthot. Int. doi: 10.1080/03093640600994581 – volume: 100 start-page: 2397 year: 2008 ident: ref_109 article-title: Learning a Novel Myoelectric-Controlled Interface Task publication-title: J. Neurophysiol. doi: 10.1152/jn.90614.2008 – volume: 22 start-page: 797 year: 2014 ident: ref_83 article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305111 – ident: ref_116 – volume: 9 start-page: 026013 year: 2012 ident: ref_87 article-title: Stationary common spatial patterns for brain–computer interfacing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/2/026013 – ident: ref_103 doi: 10.1109/EMBC.2012.6346186 – volume: 23 start-page: 618 year: 2015 ident: ref_14 article-title: Concurrent adaptation of human and machine improves simultaneous and proportional myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2401134 – volume: 15 start-page: 28 year: 2018 ident: ref_124 article-title: The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0371-1 – volume: 3 start-page: 324 year: 1995 ident: ref_70 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.481972 – volume: 14 start-page: 036005 year: 2017 ident: ref_113 article-title: A mathematical model for the two-learners problem publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa620b – volume: 40 start-page: 4832 year: 2013 ident: ref_61 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.023 – volume: 59 start-page: 1436 year: 2012 ident: ref_80 article-title: Spatial filtering for robust myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2188799 – volume: 61 start-page: 279 year: 2014 ident: ref_94 article-title: Real-Time, Simultaneous Myoelectric Control Using Force and Position-Based Training Paradigms publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2013.2281595 |
| SSID | ssj0000913830 |
| Score | 2.3511624 |
| SecondaryResourceType | review_article |
| Snippet | State-of-the-art high-end prostheses are electro-mechanically able to provide a great variety of movements. Nevertheless, in order to functionally replace a... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1244 |
| SubjectTerms | Adaptation Algorithms Amputation Brain research Control algorithms Degrees of freedom Electroencephalography Electromyography Human motion Learning Myoelectric control Myoelectricity Prostheses Reproduction (biology) Robust control Robustness Usability |
| Title | Myoelectric Control for Upper Limb Prostheses |
| URI | https://www.proquest.com/docview/2548416665 |
| Volume | 8 |
| WOSCitedRecordID | wos000502269500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4zYMe_Banc_TgTcKypu2ak-jYUHCjiIPppSRNigPd6joFL_7tvrTd5hB28domITzyPn4vee8HcBExxXSrKYjCaJU4WlIihGakhdiAey6jyhUZ2USr3_eHQx4UCbe0eFY5t4mZoVaTyOTIGwhkzA2Z57lXyTsxrFHmdrWg0ChBxXRJMNQNgfu8yLGYnpc-o3mtDEN031hyy6Q-ajn6tlV_tGqOMx_T3f3v7vZgp4gurev8OOzDhh4fwPavnoOHQHpfk3x_o8hq5w_VLYxcrUGS6Kl1P3qTVmBKQV50qtMjGHQ7j-1bUnAmkIj57oyI2BEcQyAWU4pmmHmaRzbVnuJMCilQm5WQPJYOd6StXWrHHg6PpfYdV0nU92MojydjfQIWjX1P6ThCCIWY0Y4Fui5c3tE2LuhQVYXmXHJhVDQUN7wWryECCyPt8K-0q3C5mJPk7TTWjq7NpR0WqpWGS1Gfrv99BlsY3fC8cLAG5dn0Q5_DZvQ5G6XTOlRuOv3goQ6l3nennp0b_Bbc9YKnH8TNzvo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgkYeCMKBTLAhCzcOEnjASFUqKj6UIciwRTs2BGVoC1NAfVP8Rs5NwkPIXXrwBzHivx9ubvP9t0BHIdMMV0pC6IwWiWOlpQIoRmpoDbgnsuocsW02USl3fbv7ngnBx9ZLoy5VpnZxKmhVoPQ7JGfoZAxJ2Se514MX4jpGmVOV7MWGgktGnryjpItPq9fIb4ntl277lZvSNpVgITMd8dERI7gGCSwiFI0VMzTPLSp9hRnUkiBfFdC8kg63JG2dqkdeTg8ktp3XCXxj8B5F6DgGLLnodCptzr3X7s6psqmz2iSncMYp2ff3WxiH-0KetPfHvC3A5h6tdraf1uPdVhN42frMiH8BuR0fxNWflRV3ALSmgyS9eiFVjW5im9hbG7dDod6ZDV7z9LqmGSXRx3reBtu5_K9O5DvD_p6Fywa-Z7SUYgiEVWxHQl0zji9o22c0KGqCOUMqSBMS6abzh1PAUong27wF90inH69M0wKhswcXcrQDVLjEQff0O7NfnwESzfdVjNo1tuNfVjGWI4naZIlyI9Hr_oAFsO3cS8eHaY8teBh3lT4BK1tKhY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB60iujBt_iougc9SWjc7G43BxFpLYq19KAgXtZkk2BB29qtSv-av85Jd7e1CN568LzZEPJNZuZL5gFwFDPFdPlUEIXeKvG0pEQIzUgZuQEPfEaVL4bNJsqNRvjwwJsz8JXnwtiwylwnDhW16sT2jryERMa-kAWBXzJZWESzWjvvvhHbQcq-tObtNFIRudGDT6Rvydl1FbE-dt3a5V3limQdBkjMQr9PhPEER4eBGUpRabFA89ilOlCcSSEFyr4SkhvpcU-62qeuCXC4kTr0fCXxdOC8szBXRo5pwwmb_uPofsfW2wwZTfN0GOO0NO5rk4SoYdCuTtrCSVMwtG-1lf-8M6uwnHnVzkV6DNZgRrfXYelHrcUNILeDTro3rdippAH6Dnrszn23q3tOvfUqnaZNgXnWiU424X4q692CQrvT1tvgUBMGSpsYqSNyZdcINNk4vaddnNCjagdOc9SiOCukbvt5vERIqCzS0W-kd-Bk9E83LSPy5-hijnSUqZQkGsO8-_fnQ1hA_KP6deNmDxbRweNp7mQRCv3eu96H-fij30p6B0OBdeBp2nLwDRxTMXk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myoelectric+Control+for+Upper+Limb+Prostheses&rft.jtitle=Electronics+%28Basel%29&rft.au=Igual%2C+Carles&rft.au=PardoJr%2C+Luis+A&rft.au=Hahne%2C+Janne+M&rft.au=Igual%2C+Jorge&rft.date=2019-11-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=8&rft.issue=11&rft.spage=1244&rft_id=info:doi/10.3390%2Felectronics8111244&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |