Factorization and Dilation Problems for Completely Positive Maps on von Neumann Algebras

We study factorization and dilation properties of Markov maps between von Neumann algebras equipped with normal faithful states, i.e., completely positive unital maps which preserve the given states and also intertwine their automorphism groups. The starting point for our investigation has been the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in mathematical physics Ročník 303; číslo 2; s. 555 - 594
Hlavní autori: Haagerup, Uffe, Musat, Magdalena
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.04.2011
Springer
Predmet:
ISSN:0010-3616, 1432-0916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study factorization and dilation properties of Markov maps between von Neumann algebras equipped with normal faithful states, i.e., completely positive unital maps which preserve the given states and also intertwine their automorphism groups. The starting point for our investigation has been the question of existence of non-factorizable Markov maps, as formulated by C. Anantharaman-Delaroche. We provide simple examples of non-factorizable Markov maps on for all n ≥ 3, as well as an example of a one-parameter semigroup ( T ( t )) t ≥0 of Markov maps on such that T ( t ) fails to be factorizable for all small values of t > 0. As applications, we solve in the negative an open problem in quantum information theory concerning an asymptotic version of the quantum Birkhoff conjecture, as well as we sharpen the existing lower bound estimate for the best constant in the noncommutative little Grothendieck inequality.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-011-1216-y