Factorization and Dilation Problems for Completely Positive Maps on von Neumann Algebras

We study factorization and dilation properties of Markov maps between von Neumann algebras equipped with normal faithful states, i.e., completely positive unital maps which preserve the given states and also intertwine their automorphism groups. The starting point for our investigation has been the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in mathematical physics Ročník 303; číslo 2; s. 555 - 594
Hlavní autoři: Haagerup, Uffe, Musat, Magdalena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.04.2011
Springer
Témata:
ISSN:0010-3616, 1432-0916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study factorization and dilation properties of Markov maps between von Neumann algebras equipped with normal faithful states, i.e., completely positive unital maps which preserve the given states and also intertwine their automorphism groups. The starting point for our investigation has been the question of existence of non-factorizable Markov maps, as formulated by C. Anantharaman-Delaroche. We provide simple examples of non-factorizable Markov maps on for all n ≥ 3, as well as an example of a one-parameter semigroup ( T ( t )) t ≥0 of Markov maps on such that T ( t ) fails to be factorizable for all small values of t > 0. As applications, we solve in the negative an open problem in quantum information theory concerning an asymptotic version of the quantum Birkhoff conjecture, as well as we sharpen the existing lower bound estimate for the best constant in the noncommutative little Grothendieck inequality.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-011-1216-y