An auxiliary particle filter for nonlinear dynamic equilibrium models
We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer partic...
Uloženo v:
| Vydáno v: | Economics letters Ročník 144; s. 112 - 114 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.07.2016
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0165-1765, 1873-7374 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!