An auxiliary particle filter for nonlinear dynamic equilibrium models

We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics letters Jg. 144; S. 112 - 114
Hauptverfasser: Yang, Yuan, Wang, Lu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.07.2016
Elsevier Science Ltd
Schlagworte:
ISSN:0165-1765, 1873-7374
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer particles to achieve comparable results as currently available particle filters. We illustrate our algorithm in Bayesian estimation of a new Keynesian macroeconomic model. •An auxiliary particle filter for nonlinear DSGE models is developed.•It achieves more accurate likelihood approximation and accelerates the convergence of posterior sampler.•It requires much fewer particles than generally suggested to obtain comparable efficiency.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0165-1765
1873-7374
DOI:10.1016/j.econlet.2016.04.020