Lagrange Multiplier Rules for Weak Approximate Pareto Solutions of Constrained Vector Optimization Problems in Hilbert Spaces
In the Hilbert space case, in terms of proximal normal cone and proximal coderivative, we establish a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems. In this case, our Lagrange multiplier rule improves the main result on vector optimization...
Gespeichert in:
| Veröffentlicht in: | Journal of optimization theory and applications Jg. 162; H. 2; S. 665 - 679 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.08.2014
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In the Hilbert space case, in terms of proximal normal cone and proximal coderivative, we establish a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems. In this case, our Lagrange multiplier rule improves the main result on vector optimization in Zheng and Ng (SIAM J. Optim. 21: 886–911,
2011
). We also introduce a notion of a fuzzy proximal Lagrange point and prove that each Pareto (or weak Pareto) solution is a fuzzy proximal Lagrange point. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-012-0259-3 |