Lagrange Multiplier Rules for Weak Approximate Pareto Solutions of Constrained Vector Optimization Problems in Hilbert Spaces

In the Hilbert space case, in terms of proximal normal cone and proximal coderivative, we establish a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems. In this case, our Lagrange multiplier rule improves the main result on vector optimization...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 162; číslo 2; s. 665 - 679
Hlavní autori: Zheng, Xi Yin, Li, Runxin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.08.2014
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the Hilbert space case, in terms of proximal normal cone and proximal coderivative, we establish a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems. In this case, our Lagrange multiplier rule improves the main result on vector optimization in Zheng and Ng (SIAM J. Optim. 21: 886–911, 2011 ). We also introduce a notion of a fuzzy proximal Lagrange point and prove that each Pareto (or weak Pareto) solution is a fuzzy proximal Lagrange point.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-012-0259-3