Rank-density-based multiobjective genetic algorithm and benchmark test function study

Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 7; číslo 4; s. 325 - 343
Hlavní autoři: Haiming Lu, Yen, G.G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.08.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accumulated ranking strategy, and a "forbidden region" concept are introduced, completed by a revised adaptive cell density evaluation scheme and a rank-density-based fitness assignment technique. In addition, four types of MOP features, such as discontinuous and concave Pareto front, local optimality, high-dimensional decision space and high-dimensional objective space are exploited and the corresponding MOP test functions are designed. By examining the selected performance indicators, RDGA is found to be statistically competitive with four state-of-the-art algorithms in terms of keeping the diversity of the individuals along the tradeoff surface, tending to extend the Pareto front to new areas and finding a well-approximated Pareto optimal front.
AbstractList Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accumulated ranking strategy, and a "forbidden region" concept are introduced, completed by a revised adaptive cell density evaluation scheme and a rank-density-based fitness assignment technique. In addition, four types of MOP features, such as discontinuous and concave Pareto front, local optimality, high-dimensional decision space and high-dimensional objective space are exploited and the corresponding MOP test functions are designed. By examining the selected performance indicators, RDGA is found to be statistically competitive with four state-of-the-art algorithms in terms of keeping the diversity of the individuals along the tradeoff surface, tending to extend the Pareto front to new areas and finding a well-approximated Pareto optimal front.
Author Haiming Lu
Yen, G.G.
Author_xml – sequence: 1
  surname: Haiming Lu
  fullname: Haiming Lu
  organization: Prediction Corp., Santa Fe, NM, USA
– sequence: 2
  givenname: G.G.
  surname: Yen
  fullname: Yen, G.G.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15071288$$DView record in Pascal Francis
BookMark eNp90clr3DAUBnBRUmiW3gu9mELbkydPiy35WIZ0gUChJKE38awl0cQjp5JcmP8-GiYQyCEn6fD7tLzvhBzFOTpCPlBYUQrD-dXFzXrFAPhKUcYYvCHHdBC0BWD9Ud2DGlop1d935CTnDQAVHR2OyfUfjPetdTGHsmtHzM4222UqYR43zpTw3zW3LroSTIPT7ZxCuds2GG0zumjutpjum-JyafwSq55jk8tid2fkrccpu_dP6ym5_n5xtf7ZXv7-8Wv97bI1XNHSYn2oNQOMox2R816hFwZBgTGemR6MFb3vhHRWSS6YQ24tR5SITBjhPT8lXw_nPqT531LfobchGzdNGN28ZD0A7dUgOlHll1clU12VVFb46QXczEuK9RdaKcEGELKv6PMTwmxw8gmjCVk_pFAnstO0A0mZUtXBwZk055ycfyag97XpfW16X5s-1FYj_YuICQX3oy0Jw_Ra8OMhGJxzz_cwxjsp-CPhRqfo
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ejor_2009_12_014
crossref_primary_10_1109_TWC_2005_853826
crossref_primary_10_1007_s00170_005_0029_6
crossref_primary_10_1007_s10489_008_0140_0
crossref_primary_10_1016_j_measurement_2024_115314
crossref_primary_10_1016_j_ins_2013_06_037
crossref_primary_10_1017_jmech_2019_41
crossref_primary_10_1109_TCST_2006_876639
crossref_primary_10_1016_j_eswa_2010_02_008
crossref_primary_10_1109_TSMC_2012_2234943
crossref_primary_10_1016_j_ejor_2020_01_004
crossref_primary_10_1016_S1874_8651_10_60050_6
crossref_primary_10_1002_int_20328
crossref_primary_10_1016_j_cherd_2012_08_004
crossref_primary_10_1109_TETCI_2018_2880516
crossref_primary_10_1007_s00170_018_2458_z
crossref_primary_10_1109_TEVC_2013_2296151
crossref_primary_10_1109_TEVC_2006_872344
crossref_primary_10_1109_TMAG_2007_916027
crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_013
crossref_primary_10_1109_TCYB_2017_2692385
crossref_primary_10_1016_j_asoc_2011_09_005
crossref_primary_10_1109_TSMCA_2009_2013333
crossref_primary_10_1007_s10732_007_9037_z
crossref_primary_10_3390_machines7010017
crossref_primary_10_1007_s00500_016_2422_5
crossref_primary_10_1016_j_ejor_2008_09_022
crossref_primary_10_1109_TCYB_2014_2317693
crossref_primary_10_1016_j_compenvurbsys_2010_03_001
crossref_primary_10_1016_j_compenvurbsys_2006_08_002
crossref_primary_10_1109_TEVC_2008_925798
crossref_primary_10_1007_s00500_014_1480_9
crossref_primary_10_1007_s00500_021_05750_0
crossref_primary_10_1016_j_ejor_2005_10_018
crossref_primary_10_1016_j_mcm_2010_06_007
crossref_primary_10_1016_j_eswa_2025_128670
crossref_primary_10_1016_j_swevo_2013_12_002
crossref_primary_10_1016_j_knosys_2016_06_018
crossref_primary_10_4018_jaec_2010010104
crossref_primary_10_1080_03052150600880706
crossref_primary_10_1109_TSMCA_2009_2013915
crossref_primary_10_1068_b38003
crossref_primary_10_1243_09544100JAERO771
crossref_primary_10_1142_S0217595915500360
crossref_primary_10_1016_j_asoc_2011_11_006
crossref_primary_10_3390_math12182951
crossref_primary_10_1007_s11036_019_01403_7
crossref_primary_10_1016_j_cie_2016_06_021
crossref_primary_10_1177_0954406213508510
crossref_primary_10_3141_2160_05
crossref_primary_10_1080_03052150903406563
crossref_primary_10_1109_TEVC_2016_2574621
crossref_primary_10_1016_j_swevo_2015_01_002
crossref_primary_10_1108_EC_03_2012_0072
crossref_primary_10_1109_TCYB_2015_2403131
crossref_primary_10_1109_TSMCA_2011_2162498
crossref_primary_10_1109_TCYB_2017_2779450
crossref_primary_10_1155_2020_1419290
crossref_primary_10_1109_TEVC_2005_860766
crossref_primary_10_1007_s10732_007_9041_3
crossref_primary_10_1017_S096012951300073X
crossref_primary_10_1016_j_ins_2012_09_019
crossref_primary_10_1109_TEVC_2005_860762
crossref_primary_10_3390_pr10010098
crossref_primary_10_1109_TEVC_2007_892759
crossref_primary_10_1587_transinf_E93_D_2879
crossref_primary_10_1007_s10479_024_06325_6
crossref_primary_10_1016_j_isatra_2008_11_002
crossref_primary_10_1016_S0019_0578_07_60185_2
crossref_primary_10_1007_s10696_023_09514_w
crossref_primary_10_1109_ACCESS_2017_2752901
crossref_primary_10_1109_TEVC_2010_2046328
crossref_primary_10_1016_j_asoc_2012_03_001
crossref_primary_10_1016_j_neucom_2011_09_042
crossref_primary_10_1016_j_ress_2008_10_002
crossref_primary_10_1016_j_ifacol_2015_09_090
crossref_primary_10_1016_j_paerosci_2024_101017
crossref_primary_10_1016_j_ress_2005_11_018
crossref_primary_10_1109_TEVC_2008_2009032
crossref_primary_10_1109_TVT_2007_897246
crossref_primary_10_1109_ACCESS_2020_2971355
crossref_primary_10_1109_TEVC_2006_882428
crossref_primary_10_1007_s00500_018_3356_x
crossref_primary_10_1109_TEVC_2008_917202
crossref_primary_10_1016_j_buildenv_2015_02_041
Cites_doi 10.1109/CEC.2002.1007013
10.1162/evco.1995.3.1.1
10.1162/evco.1999.7.3.205
10.1109/ICEC.1994.350040
10.1109/ICSMC.1995.537993
10.1109/3468.650319
10.1080/00207729608929211
10.1109/4235.797969
10.1007/3-540-45356-3_83
10.1109/CEC.2000.870296
10.1162/evco.1994.2.3.221
10.1109/4235.585893
10.1162/evco.1996.4.1.1
10.1109/ICEC.1994.350037
10.1145/298151.298382
10.1162/106365600568202
10.1109/CEC.2000.870274
10.1162/106365600568167
10.1007/3-540-61723-X_1022
10.1109/ICEC.1996.542703
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
Copyright_xml – notice: 2003 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2003.812220
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1941-0026
EndPage 343
ExternalDocumentID 2429414841
15071288
10_1109_TEVC_2003_812220
1223574
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c381t-a222dc90bbdba3368af4ca080ccf2c60cd46f547ed87342ea3dd3aa7aa24c4ff3
IEDL.DBID RIE
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184819400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Sep 27 20:40:40 EDT 2025
Sat Sep 27 19:57:44 EDT 2025
Fri Jul 25 06:14:29 EDT 2025
Mon Jul 21 09:17:14 EDT 2025
Sat Nov 29 08:03:19 EST 2025
Tue Nov 18 21:29:49 EST 2025
Tue Aug 26 16:38:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Statistical analysis
Pareto optimum
Genetic algorithm
Evolutionary algorithm
Benchmark calculation
Multiobjective programming
Pareto optimality
Multiobjective evolutionary algorithm (MOEA)
Optimization
Search algorithm
multiobjective optimization (MO)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-a222dc90bbdba3368af4ca080ccf2c60cd46f547ed87342ea3dd3aa7aa24c4ff3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 884290476
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_901689454
ieee_primary_1223574
pascalfrancis_primary_15071288
crossref_primary_10_1109_TEVC_2003_812220
proquest_journals_884290476
proquest_miscellaneous_28568917
crossref_citationtrail_10_1109_TEVC_2003_812220
PublicationCentury 2000
PublicationDate 2003-08-01
PublicationDateYYYYMMDD 2003-08-01
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2003
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Van Veldhuizen (ref22) 1999
ref12
ref34
ref31
ref30
ref10
ref1
ref18
Viennet (ref32) 1996; 2
Borges (ref17)
Schaffer (ref15)
Knowles (ref28)
Goldberg (ref14) 1989
Szmit (ref6)
Hwang (ref2) 1979; 164
ref26
ref25
ref20
Michalewicz (ref24)
Valenzuela-Rendón (ref16)
ref21
ref27
ref29
Whitely (ref19)
ref7
ref9
ref4
ref3
Zitzler (ref11) 2001
ref5
Robert (ref33) 1997
Van Veldhuizen (ref8) 1998
De Jong (ref23) 1975
References_xml – volume-title: Multiobjective Evolutionary Algorithm Research: A History and Analysis
  year: 1998
  ident: ref8
– ident: ref34
  doi: 10.1109/CEC.2002.1007013
– ident: ref3
  doi: 10.1162/evco.1995.3.1.1
– volume-title: Multiobjective Evolutionary Algorithms: Classifications, Analyzes, and New Innovations
  year: 1999
  ident: ref22
– ident: ref31
  doi: 10.1162/evco.1999.7.3.205
– ident: ref4
  doi: 10.1109/ICEC.1994.350040
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning. Reading
  year: 1989
  ident: ref14
– start-page: 424
  volume-title: Proc. Conf. Genetic and Evolutionary Computation (GECCO-2001)
  ident: ref28
  article-title: Benchmark problem generators and results for the multiobjective degree-constraint minimum spanning tree problem
– ident: ref30
  doi: 10.1109/ICSMC.1995.537993
– ident: ref9
  doi: 10.1109/3468.650319
– volume-title: An Analysis of Behavior of a Class of Genetic Adaptive Systems
  year: 1975
  ident: ref23
– volume: 2
  start-page: 255
  year: 1996
  ident: ref32
  article-title: Multicriteria optimization using a genetic algorithm for determining a Pareto front
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207729608929211
– ident: ref1
  doi: 10.1109/4235.797969
– ident: ref12
  doi: 10.1007/3-540-45356-3_83
– ident: ref29
  doi: 10.1109/CEC.2000.870296
– ident: ref13
  doi: 10.1162/evco.1994.2.3.221
– start-page: 227
  volume-title: Proc. Genetic and Evolutionary Computation Conf.
  ident: ref6
  article-title: Evolutionary strategies for a parallel multi-objective genetic algorithm
– start-page: 93
  volume-title: Proc. 1st Int. Conf. Genetic Algorithms
  ident: ref15
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
– ident: ref7
  doi: 10.1109/4235.585893
– volume-title: SPEA2: Improving the Strength Pareto Evolutionary Algorithm
  year: 2001
  ident: ref11
– ident: ref20
  doi: 10.1162/evco.1996.4.1.1
– start-page: 151
  volume-title: Proc. 6th Int. Conf. Genetic Algorithms
  ident: ref24
  article-title: Genetic algorithms, numerical optimization, and constraints
– ident: ref18
  doi: 10.1109/ICEC.1994.350037
– ident: ref26
  doi: 10.1145/298151.298382
– volume: 164
  volume-title: Lecture Notes in Economics and Mathematical Systems
  year: 1979
  ident: ref2
  article-title: Multiple objective decision making—methods and applications
– start-page: 658
  volume-title: Proc. 7th Int. Conf. Genetic Algorithms
  ident: ref16
  article-title: A nongenerational genetic algorithm for multiobjective optimization
– ident: ref27
  doi: 10.1162/106365600568202
– volume-title: Principles and Procedures of Statistics: A Biometrical Approach
  year: 1997
  ident: ref33
– ident: ref21
  doi: 10.1109/CEC.2000.870274
– ident: ref10
  doi: 10.1162/106365600568167
– start-page: 172
  volume-title: Proc. 7th Cong. Evolutionary Computation
  ident: ref17
  article-title: A nongenerational genetic algorithm for multiobjective optimization
– start-page: 658
  volume-title: Proc. 5th Int. Conf. Genetic Algorithms
  ident: ref19
  article-title: Cellular genetic algorithms
– ident: ref25
  doi: 10.1007/3-540-61723-X_1022
– ident: ref5
  doi: 10.1109/ICEC.1996.542703
SSID ssj0014519
Score 2.1661723
Snippet Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 325
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Benchmark testing
Computer science; control theory; systems
Density
Design engineering
Distributed computing
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Genetic algorithms
Iron
Mathematical analysis
Mathematical foundations
Mathematical models
Mathematics
Optimization
Pareto optimality
Pareto optimization
Probability and statistics
Ranking
Sciences and techniques of general use
Statistics
Theoretical computing
Title Rank-density-based multiobjective genetic algorithm and benchmark test function study
URI https://ieeexplore.ieee.org/document/1223574
https://www.proquest.com/docview/884290476
https://www.proquest.com/docview/28568917
https://www.proquest.com/docview/901689454
Volume 7
WOSCitedRecordID wos000184819400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4UGhBDYXiAxck3PU6TuIcUdWKU4VQi_YWjT02LW0TtJut1H-P7WS3RXxI3CJ5Elke2_OcGb8H8M6gnqIvJBfaG64KIm6muuQ697XWrpCObBKbqE5P9WxWf96AD-u7MM65VHzmDuNjyuVTZ5fxV9lkKiM5i9qEzaoqh7ta64xBpEkZiunrgBj1bJWSFPXk7PjrUWL-PAzRTEZl7wchKGmqxIpIXIRB8YOaxW8bc4o2J9v_189n8HRElezjMA2ew4Zrd2B7pdjAxgW8A08e0A_uwvkXbK84xRL2_o7HeEYsFRh25vuwD7IwveItR4bX37r5ZX9xw7AlZsLXLm5wfsUCUO1ZjI3Rvyxx1b6A85Pjs6NPfJRZ4DaE655jGBOytTCGDOZ5qdEriwFJWuulLYUlVfpCVY50lSvpMCfKEStEqazyPn8JW23Xuj1gwVbaAAGN81aVZI2kwqET0lMtnKAMJquRb-zIQR6lMK6bdBYRdRN9FaUx82bwVQbv12_8GPg3_mG7G31xbze4IYODX5x73x6xsNQ6g_2Vt5txBS8arUOkFqoqM3i7bg1LL-ZTsHXdctFIXZQ6HHczYH-xCGArWKhCvfpz1_bhcSoOTAWFr2Grny_dG3hkb_vLxfwgTfCfEPH8mA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RWqlwKC0UkdKCD71Uqlmv4yTOsUIgqtJVVS3V3iJ_AgUStJtF6r-vx8kuVP2QeovkSWT52Z5x5nkewFut5FD5jFMmvaYis5bqocypTH0ppcu4syaKTRSjkZxMyi8r8H55F8Y5F8ln7gAfYy7fNmaOv8oGQ47FWcQjeIzKWf1trWXOAAuldHT6MsSMcrJISrJyMD76dhhrfx4Ef8ZR2_uBE4qqKsiJVLMwLL7Ts_hta47-5njj_3r6HJ71cSX50E2EF7Di6k3YWGg2kH4Jb8L6gwKEW3D2VdVX1CKJvf1B0aNZEimGjf7e7YQkTDC850jU9XkzvWwvboiqLdHhaxc3anpFQqjaEvSOiDCJ1Wpfwtnx0fjwhPZCC9QEh91SFcbEmpJpbbVK01wqL4wKsaQxnpucGStyn4nCWVmkgjuVWpsqVSjFhRHep9uwWje12wESbLkJQaB23ojcGs1t5pRj3NuSOWYTGCxGvjJ9FXIUw7iu4mmElRViheKYadVhlcC75Ru3XQWOf9huIRb3dh0MCez9Au59O0bDXMoEdhdoV_0anlVSBl_NRJEnsL9sDYsPMyqqds18VnGZ5TIceBMgf7EI4VawEJl49eeu7cPTk_Hn0-r04-jTLqxFqmCkF76G1XY6d2_giblrL2fTvTjZfwJVdv_h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-density-based+multiobjective+genetic+algorithm+and+benchmark+test+function+study&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Haiming+Lu&rft.au=Yen%2C+G.G.&rft.date=2003-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=7&rft.issue=4&rft.spage=325&rft.epage=343&rft_id=info:doi/10.1109%2FTEVC.2003.812220&rft.externalDocID=1223574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon