Rank-density-based multiobjective genetic algorithm and benchmark test function study

Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 7; číslo 4; s. 325 - 343
Hlavní autoři: Haiming Lu, Yen, G.G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.08.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accumulated ranking strategy, and a "forbidden region" concept are introduced, completed by a revised adaptive cell density evaluation scheme and a rank-density-based fitness assignment technique. In addition, four types of MOP features, such as discontinuous and concave Pareto front, local optimality, high-dimensional decision space and high-dimensional objective space are exploited and the corresponding MOP test functions are designed. By examining the selected performance indicators, RDGA is found to be statistically competitive with four state-of-the-art algorithms in terms of keeping the diversity of the individuals along the tradeoff surface, tending to extend the Pareto front to new areas and finding a well-approximated Pareto optimal front.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2003.812220