Best linear unbiased estimators of parameters of a simple linear regression model based on ordered ranked set samples

As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.]...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical computation and simulation Vol. 78; no. 12; pp. 1267 - 1278
Main Authors: Li, Tao, Balakrishnan, Narayanaswamy
Format: Journal Article
Language:English
Published: Taylor & Francis 01.01.2008
Subjects:
ISSN:0094-9655, 1563-5163
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119-133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data.
AbstractList As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119-133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data.
Author Balakrishnan, Narayanaswamy
Li, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  email: tli@math.pku.edu.cn
  organization: LAMA, School of Mathematical Science, Peking University
– sequence: 2
  givenname: Narayanaswamy
  surname: Balakrishnan
  fullname: Balakrishnan, Narayanaswamy
  organization: Department of Mathematics and Statistics , McMaster University
BookMark eNqNkMtuHCEQRZFlSx4_PsA7Vtl1Av2Abimb2MpLsuRNvG4VUEQkdDOhGDn--zAZZxMrildFwT1V4pyx4zWtyNiVFK-lGMUbIaZ-UoPQQupBjbo9Yhs5qK4ZpOqO2Wb_3tTAcMrOiL4JIaQc2g3bXSMVHsOKkPluNQEIHa93YYGSMvHk-RYyLFjw0AGnsGwj_oEyfs1IFNLKl-QwcvN7RG1TdpjrMcP6vRbCwgn2KF2wEw-R8PKpnrP7D--_3Hxqbu8-fr55d9vYTuvSODGBlsoAtsKjVBp7BG2Vh9EpP02mNW2vjBmctL10k3Ru9EYYi_1ovTXdOXt1mLvN6ceu_mpeAlmMEVZMO5q7akhLOdagPARtTkQZ_bzN1UB-nKWY94LnZ4Iro_9ibChQqoiSIcSXkGH1KS_wkHJ0c4HHmLKvtmyg59RcfpZKvv0v2f178S9uwKl9
CitedBy_id crossref_primary_10_1080_03610926_2014_904350
crossref_primary_10_1007_s00362_025_01707_9
crossref_primary_10_1080_00949655_2019_1665043
crossref_primary_10_3390_math10152771
crossref_primary_10_1016_j_spl_2025_110430
crossref_primary_10_1080_03610918_2024_2404075
Cites_doi 10.1007/BF00773396
10.1016/j.jspi.2005.08.050
10.1007/BF02911622
10.1071/AR9520385
10.1093/biomet/39.1-2.88
10.1007/978-0-387-21664-5
10.2307/1267675
10.1080/03610927708827563
10.2307/2530493
10.1023/A:1009647718555
10.1006/jmva.1996.0067
10.1023/A:1009609902784
10.2307/2556166
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2008
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949650701756872
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 1278
ExternalDocumentID 10_1080_00949650701756872
275656
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTCW
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
AEUMN
AFFNX
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
HF~
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
UB9
UU8
V3K
V4Q
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-d09a716bae20fe167e4ea7c6fa8d6f99b2b246bb5d1c41d91dd8fb0bce48cfcb3
IEDL.DBID TFW
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260497300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-9655
IngestDate Sun Nov 09 14:14:14 EST 2025
Sat Nov 29 06:27:49 EST 2025
Tue Nov 18 21:44:20 EST 2025
Mon Oct 20 23:34:37 EDT 2025
Mon May 13 12:09:21 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-d09a716bae20fe167e4ea7c6fa8d6f99b2b246bb5d1c41d91dd8fb0bce48cfcb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35637118
PQPubID 23500
PageCount 12
ParticipantIDs crossref_primary_10_1080_00949650701756872
informaworld_taylorfrancis_310_1080_00949650701756872
proquest_miscellaneous_35637118
crossref_citationtrail_10_1080_00949650701756872
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2008
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0001
CIT0012
Lloyd E. H. (CIT0015) 1952; 39
Halls L. S. (CIT0002) 1966; 12
Chuiv N. N. (CIT0008) 1998; 17
CIT0003
CIT0014
CIT0013
CIT0005
CIT0016
CIT0004
Stokes S. L. (CIT0009) 1995; 47
Chen Z. (CIT0011) 2004
CIT0006
Stokes S. L. (CIT0007) 1988; 83
References_xml – volume: 47
  start-page: 465
  year: 1995
  ident: CIT0009
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/BF00773396
– ident: CIT0012
  doi: 10.1016/j.jspi.2005.08.050
– ident: CIT0003
  doi: 10.1007/BF02911622
– ident: CIT0001
  doi: 10.1071/AR9520385
– volume: 39
  start-page: 88
  year: 1952
  ident: CIT0015
  publication-title: Biometrika
  doi: 10.1093/biomet/39.1-2.88
– volume-title: Ranked Set Sampling–Theory and Application
  year: 2004
  ident: CIT0011
  doi: 10.1007/978-0-387-21664-5
– ident: CIT0014
  doi: 10.2307/1267675
– ident: CIT0005
  doi: 10.1080/03610927708827563
– ident: CIT0006
  doi: 10.2307/2530493
– ident: CIT0010
  doi: 10.1023/A:1009647718555
– ident: CIT0016
  doi: 10.1006/jmva.1996.0067
– ident: CIT0013
  doi: 10.1023/A:1009609902784
– volume: 83
  start-page: 35
  year: 1988
  ident: CIT0007
  publication-title: Journal of the American Statistical Association
– volume: 17
  start-page: 337
  volume-title: Handbook of Statistics
  year: 1998
  ident: CIT0008
– volume: 12
  start-page: 22
  year: 1966
  ident: CIT0002
  publication-title: Forest Science
– ident: CIT0004
  doi: 10.2307/2556166
SSID ssj0001152
Score 1.7862346
Snippet As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1267
SubjectTerms Best linear unbiased estimator
Ordered ranked set samples
Relative efficiency
Simple linear regression model
Title Best linear unbiased estimators of parameters of a simple linear regression model based on ordered ranked set samples
URI https://www.tandfonline.com/doi/abs/10.1080/00949650701756872
https://www.proquest.com/docview/35637118
Volume 78
WOSCitedRecordID wos000260497300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: TFW
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VqAc4sO1SxBZofeCEFDXZPBwfoeqql6IeqOAW-TFGSJBFmyzi53cmTla8tAc4JZY8tpXMw2OPvg_giIKENU5ipArUUaZLF2lPWWupTIwmt6gwkE3Is7Py8lL97Wtzmr6sknNoH4AiOl_Nxq1NM1TE_eBqOEU7C0nalBelZA9MYZ_N8nx2sfLDSeDb4d60kjwf7jRfG-FJVHqCWfrCR3eBZzZ655I_wXa_4xQnQUU-wwesxzAa2BxEb9xj2PqzQnBtxrDJu9AA4rwDy1Nal-Bp9UIsa3NNoc8Jxue45Zy9EXMvGEP8lmtrupYWzTXjDg9CC7wKBbe16Lh3hOmGoGaH_UmvTB5PjwZb0WgWbb7Av9mv85-_o56vIbKplG3kYqUp_TIap7HHpJCYoZa28KQBhVfKTM00K4zJXWKzxKnEudKb2FjMSuutSXdho57XuAciKym7LXySmlxltEmipBA1E6SlpVaZUxOIh_9V2R7MnDk1bqpkhXn67ItP4HglcheQPNZ1jh8rQdV2xyc-cJ287F61D-0E8jUi6Zqpvg8KVpFp832NrnG-JJm8SCUlgF_fOPI-bIbqFj4wOoCNdrHEQ_ho70l9Ft86Y_kPp3kTKA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hgkQ5tLCA2BaoD5yQIpJNHMdHilgV0a44LKK3yI8xqkSzaJNF_Hxm4mRFKdoDnBJLHttKxvOwR98H8IqchLNeYaJLNElhKp-YQFlrpW2KVjrUGMkm1GJRXV7qT8OBWzuUVXIOHSJQRG-reXPzYfRYEveGy-E0hRaK1EmWlSITfFeSn2Xs_OX8y9YSZ5Fxh7vTWqQcbzX_NsQNv3QDtfSWle5dz_zwfxf9EA6GoFO8jVryCO5gM4HDkdBBDPt7Ag8utiCu7QT2ORCNOM6PYXNKCxM8r1mLTWOvyPt5wRAd15y2t2IVBMOIX3N5Td8yor1i6OFRaI1fY81tI3r6HWH7IajZw3_SK_PH06PFTrSGRdsn8Hn-fvnuLBkoGxKXK9UlPtWGMjBrcJYGzEqFBRrlykBKUAat7czOitJa6TNXZF5n3lfBptZhUbngbP4U9ppVg89AFBUluGXIcit1QXES5YVomCMtr4wuvJ5COv6w2g145kyr8a3OtrCnf3zxKbzeinyPYB67Oqe_a0Hd9ScoIdKd3O5edz-7KcgdIvmOqU5GDatpd_OVjWlwtSEZWeaKcsCjfxz5BO6fLS_O6_MPi4_HsB-LXfj86DnsdesNvoB77gep0vplv3N-AQJkF1I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hglA5tLBQdUuhPnBCikg2iR0fgbICAaseiugt8scYVaLZapNF_Hxm4mRFKdoDnBJLHttKZsYz9ug9gBe0STjrFSZaokkKU_nEBMpaK21TtKVDjZFsQi0W1cWFPhtqc9qhrJJz6BCBInpfzcZ97cNYEfeKq-E0RRaKtKmUlSIPfJfCZskKfj7_unHEWSTc4e60lLIcLzX_NsSNbekGaOktJ93vPPP9_1zzQ9gbQk7xOurII7iDzQT2RzoHMVj3BB583kC4thPY5TA0ojg_hvUbWpfgac1KrBt7SXufFwzQccVJeyuWQTCI-BUX1_QtI9pLBh4ehVb4LVbcNqIn3xG2H4KaPfgnvTJ7PD1a7ERrWLR9Al_m787fvk8GwobE5Up1iU-1ofzLGpylATOpsECjnAykAjJobWd2VkhrS5-5IvM6874KNrUOi8oFZ_MD2GmWDR6CKCpKb2XIclvqgqIkygrRMENaXhldeD2FdPxftRvQzJlU43udbUBP__jiU3i5EbmOUB7bOqe_K0Hd9ecnIZKd3O5edz-7KZRbRPItU52MClaTbfOFjWlwuSaZUuaKMsCjfxz5BO6fnc7rTx8WH5_Cbqx04cOjY9jpVmt8BvfcD9Kk1fPebn4Bp6wWBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+linear+unbiased+estimators+of+parameters+of+a+simple+linear+regression+model+based+on+ordered+ranked+set+samples&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Li%2C+Tao&rft.au=Balakrishnan%2C+Narayanaswamy&rft.date=2008-01-01&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=78&rft.issue=12&rft.spage=1267&rft.epage=1278&rft_id=info:doi/10.1080%2F00949650701756872&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon