Best linear unbiased estimators of parameters of a simple linear regression model based on ordered ranked set samples

As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.]...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical computation and simulation Vol. 78; no. 12; pp. 1267 - 1278
Main Authors: Li, Tao, Balakrishnan, Narayanaswamy
Format: Journal Article
Language:English
Published: Taylor & Francis 01.01.2008
Subjects:
ISSN:0094-9655, 1563-5163
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119-133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0094-9655
1563-5163
DOI:10.1080/00949650701756872