Best linear unbiased estimators of parameters of a simple linear regression model based on ordered ranked set samples
As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.]...
Uloženo v:
| Vydáno v: | Journal of statistical computation and simulation Ročník 78; číslo 12; s. 1267 - 1278 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
01.01.2008
|
| Témata: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119-133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data. |
|---|---|
| AbstractList | As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441-446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119-133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data. |
| Author | Balakrishnan, Narayanaswamy Li, Tao |
| Author_xml | – sequence: 1 givenname: Tao surname: Li fullname: Li, Tao email: tli@math.pku.edu.cn organization: LAMA, School of Mathematical Science, Peking University – sequence: 2 givenname: Narayanaswamy surname: Balakrishnan fullname: Balakrishnan, Narayanaswamy organization: Department of Mathematics and Statistics , McMaster University |
| BookMark | eNqNkMtuHCEQRZFlSx4_PsA7Vtl1Av2Abimb2MpLsuRNvG4VUEQkdDOhGDn--zAZZxMrildFwT1V4pyx4zWtyNiVFK-lGMUbIaZ-UoPQQupBjbo9Yhs5qK4ZpOqO2Wb_3tTAcMrOiL4JIaQc2g3bXSMVHsOKkPluNQEIHa93YYGSMvHk-RYyLFjw0AGnsGwj_oEyfs1IFNLKl-QwcvN7RG1TdpjrMcP6vRbCwgn2KF2wEw-R8PKpnrP7D--_3Hxqbu8-fr55d9vYTuvSODGBlsoAtsKjVBp7BG2Vh9EpP02mNW2vjBmctL10k3Ru9EYYi_1ovTXdOXt1mLvN6ceu_mpeAlmMEVZMO5q7akhLOdagPARtTkQZ_bzN1UB-nKWY94LnZ4Iro_9ibChQqoiSIcSXkGH1KS_wkHJ0c4HHmLKvtmyg59RcfpZKvv0v2f178S9uwKl9 |
| CitedBy_id | crossref_primary_10_1080_03610926_2014_904350 crossref_primary_10_1007_s00362_025_01707_9 crossref_primary_10_1080_00949655_2019_1665043 crossref_primary_10_3390_math10152771 crossref_primary_10_1016_j_spl_2025_110430 crossref_primary_10_1080_03610918_2024_2404075 |
| Cites_doi | 10.1007/BF00773396 10.1016/j.jspi.2005.08.050 10.1007/BF02911622 10.1071/AR9520385 10.1093/biomet/39.1-2.88 10.1007/978-0-387-21664-5 10.2307/1267675 10.1080/03610927708827563 10.2307/2530493 10.1023/A:1009647718555 10.1006/jmva.1996.0067 10.1023/A:1009609902784 10.2307/2556166 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2008 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00949650701756872 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1563-5163 |
| EndPage | 1278 |
| ExternalDocumentID | 10_1080_00949650701756872 275656 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTCW ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGCQS AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ 07G 1TA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE AEUMN AFFNX AGLEN AGROQ AHMOU ALCKM AMEWO AMVHM AMXXU BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK HF~ IVXBP LJTGL NUSFT QCRFL TAQ TFMCV UB9 UU8 V3K V4Q 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c377t-d09a716bae20fe167e4ea7c6fa8d6f99b2b246bb5d1c41d91dd8fb0bce48cfcb3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260497300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-9655 |
| IngestDate | Sun Nov 09 14:14:14 EST 2025 Sat Nov 29 06:27:49 EST 2025 Tue Nov 18 21:44:20 EST 2025 Mon Oct 20 23:34:37 EDT 2025 Mon May 13 12:09:21 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-d09a716bae20fe167e4ea7c6fa8d6f99b2b246bb5d1c41d91dd8fb0bce48cfcb3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 35637118 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1080_00949650701756872 informaworld_taylorfrancis_310_1080_00949650701756872 proquest_miscellaneous_35637118 crossref_citationtrail_10_1080_00949650701756872 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-01-01 |
| PublicationDateYYYYMMDD | 2008-01-01 |
| PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Journal of statistical computation and simulation |
| PublicationYear | 2008 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0010 CIT0001 CIT0012 Lloyd E. H. (CIT0015) 1952; 39 Halls L. S. (CIT0002) 1966; 12 Chuiv N. N. (CIT0008) 1998; 17 CIT0003 CIT0014 CIT0013 CIT0005 CIT0016 CIT0004 Stokes S. L. (CIT0009) 1995; 47 Chen Z. (CIT0011) 2004 CIT0006 Stokes S. L. (CIT0007) 1988; 83 |
| References_xml | – volume: 47 start-page: 465 year: 1995 ident: CIT0009 publication-title: Annals of the Institute of Statistical Mathematics doi: 10.1007/BF00773396 – ident: CIT0012 doi: 10.1016/j.jspi.2005.08.050 – ident: CIT0003 doi: 10.1007/BF02911622 – ident: CIT0001 doi: 10.1071/AR9520385 – volume: 39 start-page: 88 year: 1952 ident: CIT0015 publication-title: Biometrika doi: 10.1093/biomet/39.1-2.88 – volume-title: Ranked Set Sampling–Theory and Application year: 2004 ident: CIT0011 doi: 10.1007/978-0-387-21664-5 – ident: CIT0014 doi: 10.2307/1267675 – ident: CIT0005 doi: 10.1080/03610927708827563 – ident: CIT0006 doi: 10.2307/2530493 – ident: CIT0010 doi: 10.1023/A:1009647718555 – ident: CIT0016 doi: 10.1006/jmva.1996.0067 – ident: CIT0013 doi: 10.1023/A:1009609902784 – volume: 83 start-page: 35 year: 1988 ident: CIT0007 publication-title: Journal of the American Statistical Association – volume: 17 start-page: 337 volume-title: Handbook of Statistics year: 1998 ident: CIT0008 – volume: 12 start-page: 22 year: 1966 ident: CIT0002 publication-title: Forest Science – ident: CIT0004 doi: 10.2307/2556166 |
| SSID | ssj0001152 |
| Score | 1.7862346 |
| Snippet | As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E.... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1267 |
| SubjectTerms | Best linear unbiased estimator Ordered ranked set samples Relative efficiency Simple linear regression model |
| Title | Best linear unbiased estimators of parameters of a simple linear regression model based on ordered ranked set samples |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00949650701756872 https://www.proquest.com/docview/35637118 |
| Volume | 78 |
| WOSCitedRecordID | wos000260497300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: TFW dateStart: 19720101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EPOjBR1Wszz14EoKbpskmRxWLBy0eKnoL-xRBU2lS8ec7s0mKL3rQUxIys7sk89wdvgE4jrjVzrooML3QBGgl00ByhYqH6RC3VmMO4buWXIvhMH14yG6b2pyyKaukHNrVQBHeVpNyS1W2FXGnVA2XYWQhUJriJBVkgdHtk1qOBvczOxzW_XaIOkDyuD3T_G2EL17pC2bpDxvtHc9g7Z9LXofVJuJkZ7WIbMCCLTqw1nZzYI1yd2DlZobgWnZgmaLQGsR5E6bnuC5G08oJmxbqCV2fYYTP8UI5e8nGjhGG-AvV1vgnyconwh1umSb2sS64LZjvvcOUHwIfPfYn3lLzeLyUtmKlJNZyC-4Gl6OLq6Dp1xDoSIgqMDyTmH4paXvc2TARtm-l0ImTqUlclqme6vUTpWIT6n5ostCY1CmutO2n2mkVbcNiMS7sDjAVoWN1PBOZw4AN3wvpMDfDcCS2CsfqAm__V64bMHPqqfGchzPM029fvAsnM5bXGsljHjH_LAR55bdPXN3r5Cd5Xr1XXYjnsERzpjpqBSxH1abzGlnY8RR54iQSmADu_nHkPViuq1tow2gfFqvJ1B7Akn5D8ZkcemX5AHfcEtg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4higQcoA2ghgLZA6dKFus49trHtiICkUQ9BJWbtU8UCZwqdlB_fmfWdlQKygFOtuWd3ZU97x19A3AecauddVFg-qEJUEumgeQKBQ_DIW6txhjCdy0ZickkvbvLfjYJt7Ipq6QY2tVAEV5Xk3BTMrotibugcrgMXQuB7BQnqUAV_CFGO0vY-dPhr5UmDuuOOzQ8wPFxe6r52hTP7NIz1NIXWtqbnuH-ezf9EfYap5N9q7nkE2zYogP7bUMH1sh3B3bHKxDXsgM75IjWOM4HsPyOG2O0rlywZaFmaP0MI4iORwrbSzZ3jGDEH6m8xj9JVs4IerglWtj7uua2YL79DlN-Cnz08J94S_3j8VLaipWSSMtDuB1eTn9cBU3LhkBHQlSB4ZnECExJ2-fOhomwAyuFTpxMTeKyTPVVf5AoFZtQD0KThcakTnGl7SDVTqvoCDaLeWE_A1MR2lbHM5E59NnwvZAOwzP0SGKrcK4u8PaH5brBM6e2Gg95uII9_e-Ld-HriuR3DeaxbjD_lwvyymdQXN3u5OXwvPpTdSFeQxKtWarXcliO0k1HNrKw8yXSxEkkMAY8fuPMPdi-mo5H-eh6cvMFdupiF8ofncBmtVjaU9jST8hKizMvOX8BzJEXAg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VgBAcoA2tCIVmDz0hWazj2GsfoRCBmkY5UJWbtU-EVBwUO4ifz8zajoBUOdCTbXlmd2XPc3f0DcD3iFvtrIsC0w9NgFYyDSRXqHiYDnFrNeYQvmvJSIzH6c1NNmlqc8qmrJJyaFcDRXhbTcr9YFxbEXdC1XAZRhYCpSlOUoEWeB3D5oQE_Hr4Z2GIw7rhDpEHSB-3h5r_GuKVW3oFWrpkpL3nGe7-55o_wk4TcrLTWkY-wQdbdGC3befAGu3uwPavBYRr2YEtCkNrFOc9mJ_huhhNK2dsXqg79H2GEUDHPSXtJZs6RiDi91Rc458kK-8IeLhlmtnbuuK2YL75DlN-CHz04J94S93j8VLaipWSWMvP8Ht4cf3jMmgaNgQ6EqIKDM8k5l9K2j53NkyEHVgpdOJkahKXZaqv-oNEqdiEehCaLDQmdYorbQepdlpFX2CtmBZ2H5iK0LM6nonMYcSG74V0mJxhPBJbhWN1gbf_K9cNmjk11fibhwvQ0zdfvAvHC5aHGspjFTF_KQR55fdPXN3sZJk8r56qLsQrWKIVU_VaActRt-nARhZ2OkeeOIkEZoAH7xy5B5uT82E-uhr__ApbdaULbR4dwlo1m9sj2NCPKEmzb15vngFz0hW0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+linear+unbiased+estimators+of+parameters+of+a+simple+linear+regression+model+based+on+ordered+ranked+set+samples&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Li%2C+Tao&rft.au=Balakrishnan%2C+Narayanaswamy&rft.date=2008-01-01&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=78&rft.issue=12&rft.spage=1267&rft.epage=1278&rft_id=info:doi/10.1080%2F00949650701756872&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949650701756872 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |