Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis Jg. 28; H. 1; S. 109 - 122
Hauptverfasser: Blanco-Portals, Javier, Peiró, Francesca, Estradé, Sònia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, USA Cambridge University Press 01.02.2022
Oxford University Press
Schlagworte:
ISSN:1431-9276, 1435-8115, 1435-8115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1431-9276
1435-8115
1435-8115
DOI:10.1017/S1431927621013696