Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Microscopy and microanalysis Ročník 28; číslo 1; s. 109 - 122
Hlavní autoři: Blanco-Portals, Javier, Peiró, Francesca, Estradé, Sònia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 01.02.2022
Oxford University Press
Témata:
ISSN:1431-9276, 1435-8115, 1435-8115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1431-9276
1435-8115
1435-8115
DOI:10.1017/S1431927621013696