Feature selection in machine learning: A new perspective

High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 300; s. 70 - 79
Hlavní autori: Cai, Jie, Luo, Jiawei, Wang, Shulin, Yang, Sheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 26.07.2018
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, and facilitate a better understanding for the learning model or data. In this study, we discuss several frequently-used evaluation measures for feature selection, and then survey supervised, unsupervised, and semi-supervised feature selection methods, which are widely applied in machine learning problems, such as classification and clustering. Lastly, future challenges about feature selection are discussed.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2017.11.077