Feature selection in machine learning: A new perspective

High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 300; s. 70 - 79
Hlavní autoři: Cai, Jie, Luo, Jiawei, Wang, Shulin, Yang, Sheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 26.07.2018
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:High-dimensional data analysis is a challenge for researchers and engineers in the fields of machine learning and data mining. Feature selection provides an effective way to solve this problem by removing irrelevant and redundant data, which can reduce computation time, improve learning accuracy, and facilitate a better understanding for the learning model or data. In this study, we discuss several frequently-used evaluation measures for feature selection, and then survey supervised, unsupervised, and semi-supervised feature selection methods, which are widely applied in machine learning problems, such as classification and clustering. Lastly, future challenges about feature selection are discussed.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2017.11.077