Efficient Quantum Algorithms for Simulating Sparse Hamiltonians

We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in mathematical physics Ročník 270; číslo 2; s. 359 - 371
Hlavní autori: Berry, Dominic W., Ahokas, Graeme, Cleve, Richard, Sanders, Barry C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer 01.03.2007
Springer Nature B.V
Predmet:
ISSN:0010-3616, 1432-0916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and ||H|| is bounded by a constant, we may select any positive integer k such that the simulation requires O((log*n)t1+1/2k) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-006-0150-x