Efficient Quantum Algorithms for Simulating Sparse Hamiltonians
We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row...
Saved in:
| Published in: | Communications in mathematical physics Vol. 270; no. 2; pp. 359 - 371 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Heidelberg
Springer
01.03.2007
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0010-3616, 1432-0916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and ||H|| is bounded by a constant, we may select any positive integer k such that the simulation requires O((log*n)t1+1/2k) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0010-3616 1432-0916 |
| DOI: | 10.1007/s00220-006-0150-x |