Mixed-effects random forest for clustered data

This paper presents an extension of the random forest (RF) method to the case of clustered data. The proposed 'mixed-effects random forest' (MERF) is implemented using a standard RF algorithm within the framework of the expectation-maximization algorithm. Simulation results show that the p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical computation and simulation Ročník 84; číslo 6; s. 1313 - 1328
Hlavní autori: Hajjem, Ahlem, Bellavance, François, Larocque, Denis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 03.06.2014
Taylor & Francis Ltd
Predmet:
ISSN:0094-9655, 1563-5163
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an extension of the random forest (RF) method to the case of clustered data. The proposed 'mixed-effects random forest' (MERF) is implemented using a standard RF algorithm within the framework of the expectation-maximization algorithm. Simulation results show that the proposed MERF method provides substantial improvements over standard RF when the random effects are non-negligible. The use of the method is illustrated to predict the first-week box office revenues of movies.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2012.741599