Mixed-effects random forest for clustered data

This paper presents an extension of the random forest (RF) method to the case of clustered data. The proposed 'mixed-effects random forest' (MERF) is implemented using a standard RF algorithm within the framework of the expectation-maximization algorithm. Simulation results show that the p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical computation and simulation Ročník 84; číslo 6; s. 1313 - 1328
Hlavní autoři: Hajjem, Ahlem, Bellavance, François, Larocque, Denis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.06.2014
Taylor & Francis Ltd
Témata:
ISSN:0094-9655, 1563-5163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an extension of the random forest (RF) method to the case of clustered data. The proposed 'mixed-effects random forest' (MERF) is implemented using a standard RF algorithm within the framework of the expectation-maximization algorithm. Simulation results show that the proposed MERF method provides substantial improvements over standard RF when the random effects are non-negligible. The use of the method is illustrated to predict the first-week box office revenues of movies.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2012.741599