Mixed-effects random forest for clustered data
This paper presents an extension of the random forest (RF) method to the case of clustered data. The proposed 'mixed-effects random forest' (MERF) is implemented using a standard RF algorithm within the framework of the expectation-maximization algorithm. Simulation results show that the p...
Uloženo v:
| Vydáno v: | Journal of statistical computation and simulation Ročník 84; číslo 6; s. 1313 - 1328 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.06.2014
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents an extension of the random forest (RF) method to the case of clustered data. The proposed 'mixed-effects random forest' (MERF) is implemented using a standard RF algorithm within the framework of the expectation-maximization algorithm. Simulation results show that the proposed MERF method provides substantial improvements over standard RF when the random effects are non-negligible. The use of the method is illustrated to predict the first-week box office revenues of movies. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0094-9655 1563-5163 |
| DOI: | 10.1080/00949655.2012.741599 |