Stochastic Separated Continuous Conic Programming: Strong Duality and a Solution Method

We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering Jg. 2014; H. 1
1. Verfasser: Wang, Xiaoqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Hindawi Publishing Corporation 01.01.2014
John Wiley & Sons, Inc
Schlagworte:
ISSN:1024-123X, 1563-5147
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic control. Based on the relationship among SSCCP, its dual, and their discretization counterparts, we develop a strong duality theory for the SSCCP. We also suggest a polynomial-time approximation algorithm that solves the SSCCP to any predefined accuracy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2014/896591