Stochastic Separated Continuous Conic Programming: Strong Duality and a Solution Method

We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical problems in engineering Ročník 2014; číslo 1
Hlavní autor: Wang, Xiaoqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi Publishing Corporation 01.01.2014
John Wiley & Sons, Inc
Témata:
ISSN:1024-123X, 1563-5147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic control. Based on the relationship among SSCCP, its dual, and their discretization counterparts, we develop a strong duality theory for the SSCCP. We also suggest a polynomial-time approximation algorithm that solves the SSCCP to any predefined accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2014/896591