Stochastic Separated Continuous Conic Programming: Strong Duality and a Solution Method
We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic con...
Uloženo v:
| Vydáno v: | Mathematical problems in engineering Ročník 2014; číslo 1 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Hindawi Publishing Corporation
01.01.2014
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 1024-123X, 1563-5147 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study a new class of optimization problems called stochastic separated continuous conic programming (SSCCP). SSCCP is an extension to the optimization model called separated continuous conic programming (SCCP) which has applications in robust optimization and sign-constrained linear-quadratic control. Based on the relationship among SSCCP, its dual, and their discretization counterparts, we develop a strong duality theory for the SSCCP. We also suggest a polynomial-time approximation algorithm that solves the SSCCP to any predefined accuracy. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1024-123X 1563-5147 |
| DOI: | 10.1155/2014/896591 |