Cylindrical Algebraic Sub-Decompositions
Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all...
Saved in:
| Published in: | Mathematics in computer science Vol. 8; no. 2; pp. 263 - 288 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
Springer Basel
01.06.2014
|
| Subjects: | |
| ISSN: | 1661-8270, 1661-8289 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in
Maple
. |
|---|---|
| AbstractList | Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in
Maple
. |
| Author | Davenport, J. H. Wilson, D. J. Bradford, R. J. England, M. |
| Author_xml | – sequence: 1 givenname: D. J. surname: Wilson fullname: Wilson, D. J. organization: Department of Computer Science, University of Bath – sequence: 2 givenname: R. J. surname: Bradford fullname: Bradford, R. J. organization: Department of Computer Science, University of Bath – sequence: 3 givenname: J. H. surname: Davenport fullname: Davenport, J. H. organization: Department of Computer Science, University of Bath – sequence: 4 givenname: M. surname: England fullname: England, M. email: M.England@bath.ac.uk organization: Department of Computer Science, University of Bath |
| BookMark | eNp9j01rwzAMQM3oYG23H7Bbj7t4s-zMSo4l-4TCDtvOxnbs4pImxU4P7a-fS8YOOxQkJJCe0JuRSdd3jpBbYPfAGD4kACwlZVDkrIAeL8gUpARa8rKa_PXIrsgspQ1jkkMBU3JXH9rQNTFY3S6W7dqZqINdfO4NfXK23-76FIbQd-maXHrdJnfzW-fk--X5q36jq4_X93q5olbIYqC2EJiDGf5oseIVl94YJnwBTelYYcE32KDhiGjzSBvvUYAQHnwpELSYExzv2tinFJ1XNgz69MKQP2sVMHUSVqOwysLqJKyOmYR_5C6GrY6HswwfmZR3u7WLatPvY5cFz0A_PT9qYQ |
| CitedBy_id | crossref_primary_10_1016_j_jlamp_2020_100633 crossref_primary_10_1016_j_jsc_2019_07_008 crossref_primary_10_1016_j_jsc_2019_07_019 crossref_primary_10_1016_j_automatica_2022_110484 crossref_primary_10_1016_j_jsc_2015_11_002 crossref_primary_10_1007_s11786_019_00394_8 crossref_primary_10_1186_s12859_022_04921_6 |
| Cites_doi | 10.1145/968708.968710 10.1007/978-3-642-32347-8_1 10.1006/jsco.1999.0327 10.1137/0213054 10.1016/S0747-7171(08)80152-6 10.1093/comjnl/36.5.432 10.1016/0196-8858(83)90014-3 10.1016/S0747-7171(88)80004-X 10.1145/12917.12919 10.1016/j.jsc.2005.09.011 10.1006/jsco.2001.0463 10.1016/j.jsc.2006.06.004 10.1145/384101.384132 10.1145/2465506.2465952 10.1145/1277548.1277557 10.1007/978-3-642-39320-4_2 10.1007/978-3-7091-9459-1_12 10.1145/2442829.2442877 10.1145/860854.860903 10.1145/1005285.1005303 10.21236/ADA460719 10.1145/2465506.2465516 10.1145/1837934.1837952 10.1109/SYNASC.2012.68 10.1145/1073884.1073897 10.1145/96877.96943 10.1145/1576702.1576718 10.1007/3-540-07407-4_17 10.1145/309831.309892 10.1145/1577190.1577203 10.1145/780506.780509 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014 |
| Copyright_xml | – notice: The Author(s) 2014 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s11786-014-0191-z |
| DatabaseName | Springer Nature Open Access Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1661-8289 |
| EndPage | 288 |
| ExternalDocumentID | 10_1007_s11786_014_0191_z |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c364t-c4374370b25c792926fbb03f41d8e04c1fd7d7b2777c6fbabff73133f1f8371a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000214008500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1661-8270 |
| IngestDate | Sat Nov 29 06:37:37 EST 2025 Tue Nov 18 21:00:49 EST 2025 Fri Feb 21 02:37:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Cylindrical algebraic decomposition Real algebraic geometry 68W30 (Symbolic Computation and Algebraic Computation) Symbolic computation Computer algebra Equational constraints |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c4374370b25c792926fbb03f41d8e04c1fd7d7b2777c6fbabff73133f1f8371a3 |
| OpenAccessLink | https://link.springer.com/10.1007/s11786-014-0191-z |
| PageCount | 26 |
| ParticipantIDs | crossref_citationtrail_10_1007_s11786_014_0191_z crossref_primary_10_1007_s11786_014_0191_z springer_journals_10_1007_s11786_014_0191_z |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-01 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics in computer science |
| PublicationTitleAbbrev | Math.Comput.Sci |
| PublicationYear | 2014 |
| Publisher | Springer Basel |
| Publisher_xml | – name: Springer Basel |
| References | CR19 CR17 Paulson, Beringer, Felty (CR36) 2012 CR39 CR16 CR15 CR14 CR13 CR35 CR34 CR11 CR33 CR10 CR32 CR30 Phisanbut, Bradford, Davenport (CR37) 2010; 44 Strzeboński (CR40) 2000; 29 Strzeboński (CR41) 2006; 41 Brown (CR7) 2001; 32 Collins, Hong (CR18) 1991; 12 Davenport (CR20) 1986; 20 Brown (CR8) 2003; 37 Brown, El Kahoui, Novotni, Weber (CR12) 2006; 41 Schwartz, Sharir (CR38) 1983; 4 CR2 CR4 CR3 CR6 CR5 CR29 CR28 CR9 England, Bradford, Davenport, Wilson, Carette, Aspinall, Lange, Sojka, Windsteiger (CR26) 2013 CR27 CR25 CR24 CR23 CR45 CR44 CR21 CR43 CR42 McCallum (CR31) 1993; 36 Davenport, Heintz (CR22) 1988; 5 Arnon, Collins, McCallum (CR1) 1984; 13 191_CR9 A. Strzeboński (191_CR41) 2006; 41 191_CR5 191_CR6 C.W. Brown (191_CR12) 2006; 41 191_CR10 191_CR32 191_CR11 191_CR33 191_CR34 191_CR13 191_CR35 G.E. Collins (191_CR18) 1991; 12 191_CR30 191_CR2 191_CR19 191_CR3 L.C. Paulson (191_CR36) 2012 J.T. Schwartz (191_CR38) 1983; 4 191_CR4 191_CR14 D. Arnon (191_CR1) 1984; 13 191_CR15 A. Strzeboński (191_CR40) 2000; 29 191_CR16 191_CR17 191_CR39 J.H. Davenport (191_CR20) 1986; 20 C.W. Brown (191_CR8) 2003; 37 S. McCallum (191_CR31) 1993; 36 N. Phisanbut (191_CR37) 2010; 44 C.W. Brown (191_CR7) 2001; 32 191_CR21 191_CR43 191_CR44 191_CR23 M. England (191_CR26) 2013 191_CR45 191_CR24 J.H. Davenport (191_CR22) 1988; 5 191_CR42 191_CR29 191_CR25 191_CR27 191_CR28 |
| References_xml | – ident: CR45 – volume: 44 start-page: 132 issue: 3 year: 2010 end-page: 135 ident: CR37 article-title: Geometry of branch cuts publication-title: ACM Commun. Comput. Algebra – ident: CR43 – ident: CR4 – volume: 37 start-page: 97 issue: 4 year: 2003 end-page: 108 ident: CR8 article-title: An overview of QEPCAD B: a program for computing with semi-algebraic sets using CADs publication-title: ACM SIGSAM Bull. doi: 10.1145/968708.968710 – ident: CR14 – ident: CR39 – ident: CR2 – ident: CR16 – start-page: 1 year: 2012 end-page: 10 ident: CR36 article-title: Metitarski: past and future publication-title: Interactive Theorem Proving. LNCS, vol. 7406 doi: 10.1007/978-3-642-32347-8_1 – ident: CR30 – ident: CR10 – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 29 start-page: 471 issue: 3 year: 2000 end-page: 480 ident: CR40 article-title: Solving systems of strict polynomial inequalities publication-title: J. Symb. Comput. doi: 10.1006/jsco.1999.0327 – ident: CR25 – ident: CR27 – ident: CR42 – ident: CR23 – ident: CR21 – ident: CR19 – ident: CR44 – start-page: 136 year: 2013 end-page: 151 ident: CR26 article-title: Understanding branch cuts of expressions publication-title: Intelligent Computer Mathematics. LNCS, vol. 7961 – volume: 13 start-page: 865 year: 1984 end-page: 877 ident: CR1 article-title: Cylindrical algebraic decomposition I: the basic algorithm publication-title: SIAM J. Comput. doi: 10.1137/0213054 – volume: 12 start-page: 299 year: 1991 end-page: 328 ident: CR18 article-title: Partial cylindrical algebraic decomposition for quantifier elimination publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(08)80152-6 – ident: CR3 – ident: CR15 – volume: 36 start-page: 432 issue: 5 year: 1993 end-page: 438 ident: CR31 article-title: Solving polynomial strict inequalities using cylindrical algebraic decomposition publication-title: Comput. J. doi: 10.1093/comjnl/36.5.432 – volume: 4 start-page: 298 year: 1983 end-page: 351 ident: CR38 article-title: On the “Piano-Movers” problem: II. General techniques for computing topological properties of real algebraic manifolds publication-title: Adv. Appl. Math. doi: 10.1016/0196-8858(83)90014-3 – ident: CR17 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 5 start-page: 29 issue: 1–2 year: 1988 end-page: 35 ident: CR22 article-title: Real quantifier elimination is doubly exponential publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80004-X – ident: CR32 – volume: 20 start-page: 15 issue: 1–2 year: 1986 end-page: 17 ident: CR20 article-title: A “Piano-Movers” problem publication-title: SIGSAM Bull. doi: 10.1145/12917.12919 – ident: CR34 – ident: CR5 – volume: 41 start-page: 1157 year: 2006 end-page: 1173 ident: CR12 article-title: Algorithmic methods for investigating equilibria in epidemic modelling publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2005.09.011 – ident: CR28 – ident: CR24 – volume: 32 start-page: 447 issue: 5 year: 2001 end-page: 465 ident: CR7 article-title: Improved projection for cylindrical algebraic decomposition publication-title: J. Symb. Comput. doi: 10.1006/jsco.2001.0463 – volume: 41 start-page: 1021 issue: 9 year: 2006 end-page: 1038 ident: CR41 article-title: Cylindrical algebraic decomposition using validated numerics publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2006.06.004 – volume: 37 start-page: 97 issue: 4 year: 2003 ident: 191_CR8 publication-title: ACM SIGSAM Bull. doi: 10.1145/968708.968710 – volume: 12 start-page: 299 year: 1991 ident: 191_CR18 publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(08)80152-6 – start-page: 136 volume-title: Intelligent Computer Mathematics. LNCS, vol. 7961 year: 2013 ident: 191_CR26 – ident: 191_CR35 doi: 10.1145/384101.384132 – ident: 191_CR2 – ident: 191_CR10 doi: 10.1145/2465506.2465952 – ident: 191_CR32 – ident: 191_CR11 doi: 10.1145/1277548.1277557 – ident: 191_CR6 doi: 10.1007/978-3-642-39320-4_2 – ident: 191_CR15 – volume: 20 start-page: 15 issue: 1–2 year: 1986 ident: 191_CR20 publication-title: SIGSAM Bull. doi: 10.1145/12917.12919 – ident: 191_CR33 doi: 10.1007/978-3-7091-9459-1_12 – ident: 191_CR30 – ident: 191_CR43 doi: 10.1145/2442829.2442877 – ident: 191_CR39 doi: 10.1145/860854.860903 – volume: 41 start-page: 1021 issue: 9 year: 2006 ident: 191_CR41 publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2006.06.004 – ident: 191_CR19 – volume: 13 start-page: 865 year: 1984 ident: 191_CR1 publication-title: SIAM J. Comput. doi: 10.1137/0213054 – ident: 191_CR23 doi: 10.1145/1005285.1005303 – ident: 191_CR9 doi: 10.21236/ADA460719 – ident: 191_CR4 doi: 10.1145/2465506.2465516 – ident: 191_CR42 doi: 10.1145/1837934.1837952 – start-page: 1 volume-title: Interactive Theorem Proving. LNCS, vol. 7406 year: 2012 ident: 191_CR36 doi: 10.1007/978-3-642-32347-8_1 – ident: 191_CR21 doi: 10.1109/SYNASC.2012.68 – ident: 191_CR25 – ident: 191_CR13 doi: 10.1145/1073884.1073897 – ident: 191_CR27 – ident: 191_CR44 – ident: 191_CR28 doi: 10.1145/96877.96943 – volume: 5 start-page: 29 issue: 1–2 year: 1988 ident: 191_CR22 publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80004-X – ident: 191_CR14 – volume: 36 start-page: 432 issue: 5 year: 1993 ident: 191_CR31 publication-title: Comput. J. doi: 10.1093/comjnl/36.5.432 – ident: 191_CR16 doi: 10.1145/1576702.1576718 – ident: 191_CR17 doi: 10.1007/3-540-07407-4_17 – ident: 191_CR5 – ident: 191_CR34 doi: 10.1145/309831.309892 – ident: 191_CR29 doi: 10.1145/1577190.1577203 – volume: 32 start-page: 447 issue: 5 year: 2001 ident: 191_CR7 publication-title: J. Symb. Comput. doi: 10.1006/jsco.2001.0463 – ident: 191_CR3 doi: 10.1145/780506.780509 – volume: 41 start-page: 1157 year: 2006 ident: 191_CR12 publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2005.09.011 – volume: 29 start-page: 471 issue: 3 year: 2000 ident: 191_CR40 publication-title: J. Symb. Comput. doi: 10.1006/jsco.1999.0327 – volume: 4 start-page: 298 year: 1983 ident: 191_CR38 publication-title: Adv. Appl. Math. doi: 10.1016/0196-8858(83)90014-3 – ident: 191_CR24 – volume: 44 start-page: 132 issue: 3 year: 2010 ident: 191_CR37 publication-title: ACM Commun. Comput. Algebra – ident: 191_CR45 |
| SSID | ssj0062141 |
| Score | 2.0679467 |
| Snippet | Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 263 |
| SubjectTerms | Computer Science Mathematics Mathematics and Statistics |
| Title | Cylindrical Algebraic Sub-Decompositions |
| URI | https://link.springer.com/article/10.1007/s11786-014-0191-z |
| Volume | 8 |
| WOSCitedRecordID | wos000214008500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1661-8289 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062141 issn: 1661-8270 databaseCode: RSV dateStart: 20071201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5o9aAHq1WxbuTgQZSBWdLM5FiqxYtF3OgtZDYplCpNFeyvd2aatBRU0GPIy8I3M2_hLR_AmTVMyFRRlCqjUGxogiTRLaR0iqWkWLirQDbBez3R76d3ZR93UVW7VynJoKkXzW6ECx_9-qqJlKDpKqw5ayc8X8P9w3OlfhM6o6skzvAgQfk8lfndK5aN0XImNBiYbv1fv7YNW6U_GbVnG2AHVsyoAfWKqyEqj24DNm_n81mLXTjvfLrv6DAeJGoPX3z2eKAip0XQlfFV5lUp1x48da8fOzeo5ExAiiXxBKmYOZ-AY0lbijvXhyZWSsxsTLQwOFbEaq65pJxz5W7l0lrOXJxqiXWhKsnZPtRGryNzAFFKcsJkbi22OlbW5DZJic6tNiQ00DcBV-Blqhwo7nkthtliFLLHJXO4ZB6XbNqEi_kjb7NpGr8JX1ZoZ-XBKn6WPvyT9BFs0LBcftWOoTYZv5sTWFcfk0ExPg0b6gtGYsZU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBalWszxw8iLKQ3U2zybFUi2JbRKv0FrIvKZQqTRXsr3d3m7QUVNBjyOTBt7vzYGa-ATjTikY8FgTFQgkUKBIijmUNCRn7nBM_Mldu2ATrdKJeL77P-7izotq9SEk6TT1vdsMsstGvrZqIMZosw0pgDJYlzH94fC7Ub0im4yqxMTwoImyWyvzuFYvGaDET6gxMs_yvX9uCzdyf9OrTDbANS2pYgXIxq8HLj24FNtozftZsB84bn-Y70tGDePXBi80e94VntAi6UrbKvCjl2oWn5nW3cYPymQlI0DAYIxFQ4xMwn5OaYMb1IaHm3Kc6wDJSfiCwlkwyThhjwtxKudaMmjhVY21CVZzSPSgNX4dqH7wYp5jyVGtfy0BoleowxjLVUmHXQF8FvwAvETmhuJ1rMUjmVMgWl8TgklhckkkVLmaPvE3ZNH4TvizQTvKDlf0sffAn6VNYu-m2W0nrtnN3COvELZ1dwSMojUfv6hhWxce4n41O3Ob6ApzAyTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWszxw8iLI0u0mzybG0FkUtBR_0FrKvUiixNFGwv97dPFoKKojHsJNsmH3MDDPzfQAXSjo-CzhBAZccuZJ4iGHRRFwENmPE9vVTRjZBez1_MAj6Bc9pUla7lynJvKfBoDTFaWMiVGPR-IapbyJhU0ERYDRbhTXX1NGbcP3ptbyKPZJTV2JthJBP6Dyt-d0nlg3TclY0Mzbd6r9_cwe2Cz_TauUbYxdWZFyDasnhYBVHugZbj3Pc1mQPLtufek6RwYZYrfHQZJVH3NK3C-pIU31elnjtw0v35rl9iwouBcQdz00Rdx3tK1CbkSan2iUinmLMdpSLhS9tl2MlqKCMUEq5HoqYUtTR8avCSoewOHIOoBK_xfIQrABH2GGRUrYSLlcyUl6ARaSExFljfR3sUpEhL4DGDd_FOFxAJBu9hFovodFLOKvD1fyVSY6y8Zvwdan5sDhwyc_SR3-SPoeNfqcbPtz17o9hk2QrZxbwBCrp9F2ewjr_SEfJ9CzbZ1-L7NIc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cylindrical+Algebraic+Sub-Decompositions&rft.jtitle=Mathematics+in+computer+science&rft.au=Wilson%2C+D.+J.&rft.au=Bradford%2C+R.+J.&rft.au=Davenport%2C+J.+H.&rft.au=England%2C+M.&rft.date=2014-06-01&rft.pub=Springer+Basel&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=8&rft.issue=2&rft.spage=263&rft.epage=288&rft_id=info:doi/10.1007%2Fs11786-014-0191-z&rft.externalDocID=10_1007_s11786_014_0191_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon |