Cylindrical Algebraic Sub-Decompositions

Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics in computer science Ročník 8; číslo 2; s. 263 - 288
Hlavní autori: Wilson, D. J., Bradford, R. J., Davenport, J. H., England, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel Springer Basel 01.06.2014
Predmet:
ISSN:1661-8270, 1661-8289
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple .
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-014-0191-z