Layers and matroids for the traveling salesman’s paths

Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters Jg. 46; H. 1; S. 60 - 63
Hauptverfasser: Schalekamp, Frans, Sebő, András, Traub, Vera, van Zuylen, Anke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2018
Elsevier
Schlagworte:
ISSN:0167-6377, 1872-7468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasingly restrictive matroids. A strongly polynomial, combinatorial algorithm follows for finding this convex combination, which is a new tool offering polyhedral insight, already instrumental in recent results for the s−t path TSP.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2017.11.002